Modeling human dynamics of face-to-face interactions

Phys. Rev. Lett. 110, 168701 (2013) Michele Starnini

UNIVERSITAT POLITĖCNICA DE CATALUNYA
in collaboration with:
Andrea Baronchelli - Northeastern University, Boston Romualdo Pastor Satorras - UPC, Barcelona

How's your first conference?

Temporal Networks

Real networks are dynamic entities, links are rewired on various time scales

The temporal dimension impacts the dynamical processes developing on networks

Social networks are intrinsically dynamic, interactions begin and end constantly

SocioPatterns

Conferences Schools
Hospitals Museum
More to come...

Empirical Data of Social Dynamics

From face-to-face interactions to dynamical networks

Empirical data with
fine-grained spatial and temporal resolution

From face-to-face interactions to dynamical networks

Empirical data with
fine-grained spatial and temporal resolution

Aggregated weighted network

Heterogeneity and Burstiness

Duration of conversations
 Inter-contacts gap times

(1 time step $=20$ seconds)

Heterogeneity and Burstiness

Duration of conversations

Inter-contacts gap times

Total contact time between pairs
Strength vs Degree

Heterogeneity and Burstiness

Duration of conversations

Inter-contacts gap times

Total contact time between pairs
Strength vs Degree

NetSci2013

A Model of Social Interactions

- N agents performs a biased random walk in a 2D space
- Whenever 2 agents intercept within a distance d, they start to interact

A Model of Social Interactions

- Agents can be in a active (move and interact) or inactive (not moving neither interacting) state
- From time to time, agents jump from active to inactive state with probability $r_{i} \in[0,1]$ and viceversa

A Model of Social Interactions

- Each agent i is characterized by his attractiveness $\quad a_{i} \in[0,1[$
- At each time step t each i agent moves with prob. $p_{i}(t)=1-\max _{j \in \mathcal{N}_{i}(t)} a_{j}$

You decide if keep interacting depending on the attractiveness of your most interesting peer

A Model of Social Interactions

- N agents performs a biased random walk in a 2D space
- Agents can be in a active or inactive state
- Interactions are ruled by the attractiveness of the agents

Simple but very realistic assumptions, reproducing experimental setting

Statistical properties of social interactions

Distribution of the contact duration

Distribution of the gap times between consecutive conversations

- Results are robust with respect to variations of the density ρ

Aggregated Network

Weight distribution $\mathrm{P}(\mathrm{w})$

- The model output for the integrated weighted network is OK

Growing Network

Aggregated degree vs time, $k(\mathrm{t})$

- Tendency of an agent to interact with new peers decreases in time, $\quad k(t) \sim t^{\mu}, \quad \mu \simeq 0.6$

Final Remarks

- Sociopatterns data of face-to-face interactions are dynamical social networks showing burstiness and heterogeneity in interactions
- We consider a simple model of mobile agents performing a RW in a 2D space, without any cognitive assumption or data-driven mechanism
- The model is able to reproduce empirical data from both points of view of human dynamics and social networks, without parameters tuning
- The intrinsic attractiveness plays a key role in ruling interactions: more interesting partners, larger tendency to keep talking (very realistic)

Thank you! (and be cool at conferences)

Modeling human dynamics of face to face interactions, Phys. Rev. Lett. IIO I6870 (2013)

Michele Starnini

