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Me

Maybe that guy
is more attractive 

than me???

V.I.P.

How’s your first conference?



Thursday, June 6, 2013

Real networks are dynamic entities, links 
are rewired on various time scales

The temporal dimension impacts 
the dynamical processes 
developing on networks

Social networks are intrinsically 
dynamic, interactions begin and 

end constantly  

Temporal Networks



Conferences
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Hospitals
Museum

More to come...



Empirical Data of Social Dynamics



Gathering data:
The SocioPatterns project

what are the statistical and dynamical properties
of the networks of contact and co-presence 
of people in social interaction?

fine-grained spatial (~ m) and temporal (<min) resolution

Empirical data with 
fine-grained spatial and 
temporal resolution

From face-to-face interactions to 
dynamical networks



Gathering data:
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Empirical data with 
fine-grained spatial and 
temporal resolution

From face-to-face interactions to 
dynamical networks

epidemic compartmental model1,2,44,45. In this model, infected
individuals can propagate the disease to healthy neighbors with
probability l, while infected individuals recover with rate m and
become susceptible again. In an homogenous population the
behavior of the epidemics is controlled by the reproductive
number R0 5 b/m, where b 5 lÆkæ is the per capita spreading rate
that takes into account the rate of contacts of each individual. The
reproductive number identifies the average number of secondary
cases generated by a primary case in an entirely susceptible
population and defines the epidemic threshold such that only if R0
. 1 can epidemics reach an endemic state and spread into a closed
population. In the past few years the inclusion of complex
connectivity networks and mobility schemes into the substrate of
spreading processes contagion, diffusion, transfer, etc. has
highlighted new and interesting results46–50. Several results states
that the epidemic threshold depends on the topological properties
of the networks. In particular, for networks characterized by a fix,
quenched topology the threshold is given by the principal eigenvalue
of the adjacency matrix48,49. Instead, for annealed network, cha-
racterized by a topology defined just on average because the
connectivity patterns has a dynamic extremely fast with respect to
the dynamical process, heterogeneous mean-field approaches2,6

predict an epidemic threshold that is inversely proportional to the
secondmoment of the network’s degree distribution: b/m. Ækæ2/Æk2æ.
However, these results do not apply to the case in which the time
variation of the connectivity pattern is occurring on the same time
scale of the dynamical process. Our model presents simple evidence
of this problem, as a disease with a small value of m21 (the infectious
period characteristic time) will have time to explore the fully-
integrated network, but will not spread on the dynamic

instantaneous networks whose union defines the integrated
one30,31,43,51. In Fig. 4-B we plot the results of numerical simulations
of the SIS model on a network generated according to our model and
on two time-aggregated network instances. We observe that the two
aggregated networks lead to misleading results in both the threshold
and the epidemic magnitude as a function of b/m. Even if the
epidemic threshold discounts the different average degree of the
networks in the factor b 5 lÆkæ, the two aggregated instances
consider all edges as always available to carry the contagion
process, disregarding the fact that the edges may be active or not
according to a specific time sequence defined by the agents’ activity.
The above finding can be more precisely quantified by calculating

analytically the epidemic threshold in activity driven networks with-
out relying on any time aggregated view of the network connectivity.
By working with activity rates we can derive epidemic evolution
equation in which the spreading process and the network dynamics
are coupled together. Let us assume a distribution of activity poten-
tial x of nodes given by a general distribution F(x) as before. At a
mean-field level, the epidemic process will be characterized by the
number of infected individuals in the class of activity rate a, at time t,
namely Ita. The number of infected individuals of class a at time t1
Dt given by:
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whereNa is the total number of individuals with activity a. In Eq. (3),
the third term on the right side takes into account the probability that
a susceptible of class a is active and acquires the infection getting a

Figure 2 | Cumulative distribution of the activity potential, FC(x), empirically measured by using four different time windows and a schematic
representation of the proposed networkmodel. In particular, in panel (A) we show the cumulative distributions of the observables x for Twitter, in panel
(B) for IMDb, and in panel (C) for PRL. In panel (D) we show a schematic representation of the model. Considering just 13 nodes andm5 3, we plot a
visualization of the resulting networks for 3 different time steps. The red nodes represent the firing/active nodes. The final visualization represents the
network after integration over all time steps.

www.nature.com/scientificreports
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Sequence of 
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networks

Aggregated 
weighted 
network
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Move
Interact

Get bored

Keep moving

NetSci2013
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A Model of Social Interactions




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



• Whenever 2 agents intercept within a distance d, they start to interact

• N agents performs a biased random walk in a 2D space
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A Model of Social Interactions
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Inactive Active

• Agents can be in a active (move and interact) or 
   inactive (not moving neither interacting) state

• From time to time, agents jump from active to inactive state 
   with probability                  and viceversa



pi(t) = 1− max
j∈Ni(t)

aj

ai ∈ [0, 1[

A Model of Social Interactions
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







• Each agent i is characterized by his attractiveness    

• At each time step t  each i agent moves with prob. 

You decide if keep interacting depending on 
the attractiveness of your most interesting peer



ri

1− ri

A Model of Social Interactions
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







• Interactions are ruled by the attractiveness of the agents    
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• Agents can be in a active or inactive state                

• N agents performs a biased random walk in a 2D space

Simple but very realistic assumptions, 
reproducing experimental setting
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• Results are robust with respect to variations of the density ρ

Distribution of the 
contact duration

Distribution of the gap times 
between consecutive conversations 

Statistical properties of social interactions
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• The model output for the integrated weighted network is OK

Weight distribution P(w)

Strength - Degree 
correlation s(k)



k(t) ∼ tµ, µ � 0.6

• Tendency of an agent to interact with new peers 
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• Sociopatterns data of face-to-face interactions are dynamical social 
networks showing burstiness and heterogeneity in interactions 

• We consider a simple model of mobile agents performing a RW in a 
2D space, without any cognitive assumption or data-driven mechanism

• The model is able to reproduce empirical data from both points of 
view of human dynamics and social networks, without parameters tuning

• The intrinsic attractiveness plays a key role in ruling interactions:   
more interesting partners, larger tendency to keep talking (very realistic) 

Final Remarks



Modeling human dynamics of 
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Phys. Rev. Lett. 110 168701 (2013)

Thank you!
(and be cool at conferences)

Michele Starnini


