Linking Mobility, Weighted Networks and Statistical Physics

A statistical mechanics approach to mobility data

Oleguer Sagarra Dept. Física Fonamental, University of Barcelona

Big Data era...(for mobility too!)

yet Big Knowledge?

What do we have? (Mobility "Weighted" Networks)

Nodes [N]

Trips [⊤]

Possible choices [N (N-1)]

"Let the data talk..." Yes, ok, but... Under "normal conditions" what would data tell us?

What do we want? We want to **compare**: Data vs Predictions

We wanna test some hypothesis

"What do I **expect** to see, given that I **fix** hypothesis A?"

We need a model!

Why not stat mech?

Lot's of events (big data)

Distribute (countable) **trips** in **states**

This is not new for networks! But other's models don't fit (**N fixed**)

Where is the problem? **Stat mech** is all about **counting configurations**...

The distinguishability problem (I)

Imagine we have 3 nodes and 3 (undirected) events (with names)

ways to put 3 trips btw 3 connected nodes?

The distinguishability problem (II)

Answer in "classical" weighted complex networks: 1

"Phase Space" (degenerate) [1,1,1]

But not in our case! The data we can see is degenerate

The distinguishability problem (III)

"Conf Space" (non degenerate) [Leo, Cristiano, Wayne] [...]

We can't see the names, but they are there!

Our approach: Micro-Canonics

What we want: Count the volume of the conf space

What we (can) do: Maximise the volume of the **phase space**

Obtain the **statistic** of occ. numbers ("expected values")

Constraints?

Linear: "Sources, sinks"

Non-Linear: "Binary skeleton"

(A good deal of maths)

Multi-Nomial statistic: Zero-Inflatec (Strict) Canonical Ensemble Grand-Can

Zero-Inflated-Poisson statistic: Grand-Canonical Ensemble

Tech details?

Entropy Maximisation Approach Provides expectations for the (real) data given some hypothesis!

Points to a great (under-looked) problem: Big data without big (general) models is useless.

Thanks for your attention...

Want more? you'll have to read the paper! Sagarra O. et altr. "Statistical Mechanics of Multi-Edge Networks" <u>arXiv:1309.2453</u>

International Territoal (

Domestic Garage, San Francisc...