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Introduction




Dynamical processes in complex heterogeneous substrates

® Many dynamical processes of large theoretical and practical interest
take place on top of complex heterogeneous systems

Dynamical Process Substrate
Spread of diseases Social Systems
Transport of information packets Internet
Transport of nutrients/energy Food Webs

Spread of information/rumours/ Social Systems

opinions
Transport of people/goods Transportation Infrastructures
Spread of digital viruses Communication Infrastructures

® These are really complex systems, and complex dynamical processes



Dynamical processes in complex heterogeneous substrates

® Interestingly, many of this substrates can be represented as a complex

network

Internet

Social (information)
network

Social (contact)
network

E-mail network




Dynamical processes in complex heterogeneous substrates

® In order to overcome these complications and obtain
information about them we can proceed to make to several
simplifications:

® Represent the complex substrate in terms of a complex
networks (simple collection of points connected by lines)

® Represent the true dynamical process as a discrete
stochastic dynamical system (sort of a cellular automata)

® Different levels of realism in the description of the complex
network and in the description of the stochastic system can
allow for different levels of accuracy in theoretical/numerical
predictions of dynamical behavior



Purpose of the lectures

® We will focus in the study of simple (but not trivial) dynamical
processes

® Non-equilibrium processes only

® We will focus on networks with simple topological properties
® Will see what this means right now

® You will learn how to solve analytically these dynamical processes,
within certain approximations (mean-field theories)

® We will see how these approximations sometimes fail and why

® You will (hopefully) learn some “tricks of the trade”

® Final objective:

® You should be able to attack and solve other models using the
tools presented here



Introduction
I Networks at the very basic




Complex networks: Strict characterization

® Network given by the Edges
® Set of vertices V={1, .. /
® Set of edges E={(i,j)} Vertices <

® Fully characterized by the adjacency matrix

1 if (i) €E
TV ()¢ E

® We will consider simple, non-directed networks (aij = aji)
® More realistic cases:
® Directed nets, weighted nets, etc.



Complex networks: Statistical characterization

® Alternative statistical characterization in terms of some
statistical distributions

® Degree k of a vertex:
® Number of other nodes that are connected to it

® Degree distribution P(k):
® Probability that a randomly chosen vertex has degree k



Frequency (C(n))

Empirical observations

® Most real networks have a degree distribution scaling as a power-law
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Complex networks: Statistical characterization

® Degree correlations P(k'|k):

® (Conditional) probability that an edge that departs from a
vertex of degree k arrives at a vertex of degree k'’

® Basic useful property:

K'P(K'"YP(k|k") = kP(k)P(K'|k)

® Degree detailed balance condition
® Mostly interested in degree uncorrelated networks with

K P(k')
(k)

® We will not consider more complex properties such as large
clustering, non-trivial correlations, etc.

Pk |k) =



Quenched vs. Annealed networks

® Quenched networks:

® A standard real network: Edges between vertices are fixed
and do not change in time: ajj takes constant values

® Annealed networks:

® Time varying network: Edges are rewired in the network at a
time scale much sorter than that of any dynamical process,
while preserving the degree of each vertex (the degree
distribution) and the degree correlations

® P(k) and P(k’|k), which were statistical properties of a
quenched network, become the very definition of an
annealed one

® From a practical point of view: A neighbors of a vertex k is a
vertex of degree k' chosen at random with probability P(k’| k)

® Probability k'P(k")/<k> in uncorrelated networks



The annealed network approximation

® In annealed networks, the adjacency matrix is defined only in a
statistical sense

® Probability that vertices i and j are joined by an edge

o KP(RIE) kK
ig 7 AR = N P(R) NP( k’ 2 ) nm = NP(k)  N{k)

nEk mek’

Uncorrelated

® Annealed network approximation networks

® Annealed networks can be considered as:
® Abstraction from a real network (rewiring)
® Useful for calculations, as we will see
® Representation of real time-varying networks

® Social networks: We have a certain number of friends,
but we don’t see all of them every day



Network models for numerical checks

® We want to make computer simulations of our models, in order
to check the predictions of possible theoretical solutions or to
make direct numerical explorations

® Using real networks is problematic:
® They are usually too small
®N ~ 104, 10°
® They come on fixed sizes
® We cannot check the effects of changing network size

® The are loaded with correlations, communities and other
topological oddities

® We have no idea (in the general case) how to treat those
analytically

® The best option is to perform numerical simulations in
statistically controlled network models



Network models for numerical checks

® Basic models for numerical simulations
® Configuration model (CM)

® Degrees kj are assigned to nodes, extracted from an a
priori degree distribution P(k); edges are randomly
created between nodes, respecting the preassigned
degrees

® Creates correlations in SF networks fory < 3
® Uncorrelated configuration model (UCM)
® As the CM, but degrees are restricted by ki < N1/2
® No correlations
® Barabasi-Albert model (BA)

® Growing network model: A new node is assigned every
time step, with m edges that are connected to old nodes
with probability proportional to ki + a

® Degree distribution SF with y = 3 + a/m



Motivation:
I Epidemic spreading of
computer viruses




Definition of computer viruses

® Definition: A computer virus is a computer program that can
copy itself and infect a computer without permission or
knowledge of the user

® Classical transmission mechanism' copying into a program
RAM HD
@ O @
¢ O - O

® Usually viruses contain additional instructions designed to
interrupt or damage the computer

® Flash funny messages on the screen
® QOverwrite files

® Overwrite the FAT of the hard drive
® Completely erase the hard drive



Types of computer viruses (strains)

According to the mechanism of transmission:

® File viruses: Infect programs. When the user
executes the program, the virus is installed in the
RAM and copies itself on any executed program

® Boot viruses: Infect the boot sector of hard drives
and floppies. On booting, the virus is installed in
the RAM and can infect programs and new floppies

® Macro viruses: Infect data files (documents), such  (—
as word documents, using the macro instructions | \/B)_)
inserted in the documents. CR=



E-mail viruses

® Class of macro viruses that propagate through email
® You receive a mail with some attachment (the virus)

® Psychology applied to make you open it: money, sex,
girls...

® The “I-love-you” bug (more on it later)

® After opening the attachment, the virus reads the list of
contacts in your email client (Outlook)

® The virus sends itself to all the people in your list of contacts
(without you realizing it)
® The infection propagates again from your contacts



Why study computer viruses?

® Economical

® Viruses cause millions of dollars worth in damaged
equipment and downtime

® March 1999, Melissa virus forced Microsoft and other
large companies to completely shut down email service

® January 2000, Mydoom worm infected 250.000
computers in one day

® 2000, I-love-you bug produced losses of $8M in a few
days

® January-October 2007, Storm worm infected 50.000.000
computers

® The antivirus industry moves billions of dollars yearly

® Scientific
® How similar are cybernetic and biological diseases?



Computer virus epidemiology

® Based in the analogy with biological epidemiology
® Two possible perspectives:
® Microscopic level

® Researches trying to reverse-engineer the source code of
computer viruses to design appropriate antivirus software

® ANALOGY: Quest for new medicines and vaccines
® Macroscopic level

® Statistical analysis and modeling of epidemiological data
in order to find information and policies aimed at lowering
epidemic outbreaks

® ANALOGY: Macroscopic prophylaxis (vaccination
strategies) for the computer community

® Statistical physics perspective enters here!!
® Focus on the macroscopic level: Statistical analysis and modeling



Strain data analysis

| Tr— —

Analysis of the statistical properties of homogeneous
groups of viruses (strains)
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Epidemic prevalence

® Epidemiologically relevant measures: prevalence (fraction of
infected individuals)

® In biological diseases: stages of an epidemic outbreak
® More on this later on
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Prevalence of individual viruses
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Experimental measure of the prevalence for
computer worms in the wild
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® Very few viruses are able
to survive long enough to
establish an endemic or
stable state (at least at
not very large time
scales)

® Endemic viruses possess
very low (p < 1072) but

stable prevalence



Why is this strange?

® Classical models of
epidemiology predict that the
prevalence depend on some
parameter A (spreading rate)
measuring the power of
infection, and shows a phase
transition between an infected
and a healthy phase at some
finite epidemic threshold Ac

P

Healthy phase

Infected
phase

Ae A

® A very low prevalence is only achieved very close to the epidemic

threshold

® Are computer viruses built to be fine-tuned to have a spreading
rate very close to the epidemic threshold?




P(1)

Survival probability of strains

Survival probability P.(t): Fraction of viruses that
survive up to a time t after their first appearance
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average lifetime
of each strain

The average life is very large compared with the
time scale of viruses or anti-viruses



Why this peculiar properties?

® The observed behavior is not compatible with simple models of
epidemic spreading: Why?

® Computer viruses spread in a very particular environment
® Computer networks (Internet)
® E-mail (social) networks

® These are complex networks with particular properties
® They are scale-free

® The scale-free nature of the environment turns out to have very
strong effects on the dynamics of virus spreading



Motivation:
II Large-scale pandemic
forecasting




Epidemics now
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How the predicting frameworks work

® Forecasting simulation frameworks
are nontrivial systems,
implementing:

® Realistic models of disease ) —
propagation, based on real
epidemiological data

® Reaction-diffusion systems
with empirically fitted
parameters

. symptomatic
infectious (no travel)

(1-0,)(1-p, )€

symptomatic

latent infectious (travel)

asymptomatic
infectious

population layer mobility layers

® Different layers of social,
population and mobility data

® Substrate for the RD system

Plus HUGE amounts of supercomputer CPU time ...



Using the proper substrate

r *

® Small-scale diffusion: Social networks i §

= \We don’t interact with people in a 2D
world, but in a network of it 4 ’ $ '
acquaintances

® Large-scale diffusion: Transportation
networks

® We move in fast and log-range
ways

® Railroad, commuting, air
transportation network

This kind of networks must be
implemented in forecasting frameworks




The importance of being a network

| Tr— —

® Strong correlation between transportation powers and epidemic
spread

® XIV century: 1345
® Black Death pandemics in Europe
® Crossed Europe in 7 years

® XX century:
® 1918 Spanish influenza pandemics
® Crossed the world in 6 months

® XXI century:
® 2009 HIN1 pandemics

® Crossed the world in less than
2 months

® Particularly important: Air transportation




Pandemic predictions are possible

® One of the greatest exits of these infrastructures is the ability
to make real and practical predictions

Peak of the epidemics on November,
instead of February (usual seasonal

peak)
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Almost no effect of preventive
measures such as airport closing



A simple model with an exact
solution:
The random walk




Diffusion processes: the random walk

® Diffusion processes (random walks) are the simplest dynamics one can
consider on any substrate

® We can start to get a glimpse of the effects of the network
complexity in the simplest case

® Additionally, it has relevance in real problems such as searching or
traffic in heterogeneous structure

® Simplest realization: the uncorrelated random walk:

® We have a particle (walker) y
on an undirected network

® At time t, it is located on a given -O
vertex of degree k

® At time t+1 , it hops with probability
1/k to one of the k neighbors of the p=1/4
initial vertex k=4 -®
b, |




Exact solution: Master equation approach

® The random walk can be characterized by the probability
P(i,t;j) that a walker starting at node j at time t=0 is at node i at time t

® Simple master equation for this probability in terms of the adjacency
matrix aij:

. Uin .
P(i,t+1;5) =) - P(n 1))

n
® Iterating the equation up to time t

P(i,t: j) ZZ Z e anm C;;_j

—1
ng—1 t

® By symmetry

® Detailed balance condition



Exact solution: Master equation approach

® In the steady state (t »o0), where information of the origin is lost
P(i) = lim P(i,t;j)
t— 00
® Probability that the walker is at vertex i in the steady state
® For this quantity

kiP(i) = kiP(j)
® From here, the normalized probability
ki
(k)N

® The probability that the walker is at vertex i is proportional to the
degree ki

P(i) =



First passage time

® First passage probability F(i,j,t): probability that a walker starting at i
arrives at j for the first time at time t

® Simple equation .

P(],t,l) — 5t,05i,j + ZP(],t—t/,])F(Z,],t/)

t'=0

® In terms of the corresponding Laplace transforms

A

AL P],S,’L _51','
F(Z,],S): (p(] i]) :

® Look at the mean first passage time to go from i to j

T(ij) =Y t"F(i,j,t) = —F'(i,],)
t=0



Mean first passage time

® Expanding the Laplace transform of P(i,t;j) in powers of s, in

introducing in the equation for F(i,j,s) we can obtain the exact
result

) 4 <kk>N if 1 :j
T'(217) = 4 ' '
(i7) \ <’7€>jN X corrections if 7 # 3

® The mean first return time is inversely proportional to the
degree

® The mean first passage time is inversely proportional to the

degree of the target, times corrections (small) depending on i
and j



Heterogeneous mean-field
theory




Quantitative analysis of dynamical processes on
complex networks

® In some cases, an exact solution is possible for simple models on
networks; becomes complex for complex processes

® But usually, we must resort to approximate methods

® As in the case of Euclidean lattices, the analytical study of dynamical
processes on complex networks in based in the mean-field analysis

® Theoretical framework analogous to the case of Euclidean lattices,
based in

® Homogeneous mixing hypothesis: The mixture of particles is
homogeneous and does not depend on space (the particular
vertex considered in the case of networks)

® Fundamental difference in the case of networks:

® Vertices with a different degree can have in principle different
dynamical properties (in particular in SF networks)

® The degree k must be taken explicitly into account in the
formulation of mean-field theories

® This corresponds to a heterogeneous mean-field theory



Construction of mean-field theories in complex networks

® To construct a heterogeneous MF theory in complex networks we
will follow the general procedure:

® Identify the appropriate set of dynamical variables W(t),
characterizing the dynamical system

® Distinguish the value of the variables in each vertex degree class
kl qIk(t)

® Write down the appropriate dynamical equation for each variable
¥, (t), starting from the dynamical rules defining the process:

825\:[’]{(?5) — f[{\I’A’(t)}]

® In this last step we will be guided by standard MF approximation

® In many cases, a direct translation adding degree
dependence will be enough

® In others, microscopic deductions are possible
® In other, intuition



Heterogeneous mean-field assumptions

® When applying mean-field techniques to complex networks,
we will be making several assumptions:

1) Noise (fluctuations) play no role in the dynamics

Usual assumption in standard mean-field treatments
Wrong in regular lattices of small dimension

In complex networks it is supposed to work due to the
small-world property (effective infinite dimensional
systems)

® The diameter of the network is so small that the
size of fluctuations cannot be very large, and we
can assume than competing fluctuations can cancel
each other in very few time steps of the order log N

® This is in contrast with non-small world networks,
such as Euclidean lattices, in which the time to
cancel fluctuations scales as N1/d



Heterogeneous mean-field assumptions

2) Lack of dynamical correlations

® We will assume that properties that depend on the state
of two vertices can be decomposed in products
depending on the state of each individual vertex

® Example: A system in with nodes can be in state si

Prob(s; = o, s; = 8) = Prob(s; = a) X Prob(s; = j3)

® Sometimes it works, sometimes it does not



Heterogeneous mean-field assumptions

3) The degree is the only property characterizing the behavior
of vertices

® All the vertices with the same degree have the same
properties, and can therefore we grouped together

® Degree coarse-graining

® We will only have to consider equations depending on
the degree k, and not on the individual vertices

® This approximation is equivalent to replacing the
adjacency matrix by an average at fixed degree

® The annealed network approximation

® HMF is exact on annealed networks!!



The random walk revisited




HMF theory of the random walk

® et us consider again the random walk problem, from the
perspective of HMF theory

® See if we can recover the previous exact results

® Characterization of diffusion given by p;(t): Probability that the
walker is in vertex i at time t

® Equivalent to the probability P(i, t; j); we disregard
effectively the starting point t

® Within a heterogeneous MF approach, we assume that this
quantity depends exclusively on the degree k, p,(t): Probability

that the walker is at a given vertex of degree k at time t
® Occupation probability



Occupation probability rate equation

® The occupation probability fulfills the rate equation

P(k'|k
&pgt(t) = — p(t) + k2, ( k,' )Pk’(t)

!
k /\L
( Destruction term ( Creation term )

® In the steady state o, p, (t) = 0, the solution of this equation is
k
(N’

pil1)

® For any correlation pattern P(k’|k)
® Universality in the solution



Other properties accessible via HMF:
Random Walk Coverage

® A quantity of immediate interest, related to the speed at which
the walker explores the network, is the coverage S(t)

® Number of different vertices visited by a walker at time ft,
averaged for different random walks starting from different
starting points

® At MF level, we define first s, (t)

® Fraction of vertices of degree k visited by the random walker
at least once

® Obviously

S(t) =N P(k)sk(t)
k



Other properties accessible via HMF:
Random Walk Coverage

® At MF level, we have the rate equation

(/\A( |l\)
— =K —sm)]E T pu().
Ot
_ k
® Substituting the steady state approximation 7)) = ON’
(/SA [ I\
ot <A>N

® Solution for the initial condition s, (0)=0

kt
sp(t)=1- exp(— m)



Other properties accessible via HMF:
Mean-first passage time

® More information about the dynamics of random walks can be
extracted from the analysis of the mean first passage time

(MFPT) © (i), defined as the average time that a random walker
takes to arrive for the first time at vertex i, starting from a
random origin

® At a very MF level

® The probability for the walker to arrive at a vertex i, in a
hop following a randomly chosen edge, is given by q(i) =
ki/ N <k>.

® Therefore, the probability of arriving at vertex i for the first
time after t hops is P,(i ; t)=[1-q(i)]*! q(i)

® The MFTP to vertex i can thus be estimated as the average

k)N
T (k;) = >, tP (i:t) = %

t ]



Numerical checks: Coverage

® MF solution takes the scaling form

v =1 Trwen () =7 (@)

® Where the scaling function f(x) depends on degree
distribution

0/
10 |

Numerically, works 10°] R
. ) "::..;. =10

perfectly for all kinds < CM 1225 N=10° |
of networks Z 10°| CM y=2.5. N=10

UCM ¥=3.0.N=10"
UCM ¥=3.0. N=10
® UCM ¥=3.0,N=10"1

'\‘ a
10 EM. N=10"
EM. N=10
* EM.N=10"
-8
10 & .
10 10 10 10 10

t/N



Mean-first passage time

> e— CM y=2.5,N=10’
N =+ CM y=2.5,N=10" _
-+ UCM ¥=3.0, N=10"
+— UCM y=3.0,N=10" -
EM, N=10" 0
*—+ EM, N=10" |

= - _
» 2,
S .
| ‘*e\.}
- '*".‘Q
By
10 7|

()

10 10" 10° 10°

T (K)/ (N<k>)

® Numerical simulations provide a perfect fit with MF
prediction



A caveat: Does HMF always work?

® Mean-field seems to work perfectly for the networks
considered

® One main reason is the lack of dynamical correlations (linear
equation)
® But does it always work for all kinds of networks?

® Consider for example a particular

type:
® Tree networks:
® Networks such that cutting a
single edge divides the
network in two disconnected
components
® \What about diffusion in this
particular kind of topology?




S(t) /N

Coverage in trees
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® Numerical simulations show
that the predicted scaling in
HMF is not fulfilled, observing
instead a form that can be
numerically fitted to

[
S7(t) = Nf _ln(r)N :

® No explanation...



Mean first passage time in trees
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4 15 20
4x10 [~ N
| e LPAY=2S
%10 = LPAy=3.0 -
i (k)= C NIn(N) - C,NIn(k+C,) |
0 Lo Lo Lo
10" 10’ 10° 10°

k

® Again MF does not work in trees, with complex expressions
for the MFPT, according to the topological properties of the
networks



Why trees are different?

® We can get an idea of why trees are different looking at the shortest
path distribution in two networks with the same size

® Average shortest path length is a
well defined quantity in looped 0.5 ——————— ——
networks

® Very narrow distribution 04 ? Looped network
® “Strong” small-world i !
03 [
|I
|

® In trees, however, there are large
variations in shortest path, beyond

average value
® “Weak” small-world

Tree network

0.1

b o olo o b

® Distance can influence the : |
behavior of discovery times or 0 5 : 20 25

MFTP’s, yielding larger values



The random walk revisited
[ Extension of the random walk




Generalizations of the random walk

® HMF allows to consider in a simple way generalizations of the
random walk which are not easily accessible through exact
solutions

® Simplest generalization: random walk with heterogeneous
transition rates

® At time t, the walker is at vertex i
® It chooses at random a neighbor j

® With a given probability r(i—j), the transition rate, the
walker hops from i to j

® Time is updated t—t+1

® At a degree coarse-grained level, the probability r(i—j) defines
a transition rate

Wkk’ — P(k/’]{)’l“(k — k/)



Generalizations of the random walk

® Time evolution of the probability P(k,t) of finding the walker at
any node of degree k: Simple master equation

dP(k,t) _ ,
p Zwkkfp k,t) ZWk/kP k' t)

® In the steady state, P°°(k) = P(k,t— )
Z Wi PP (k) + Wi, P(K')] = 0,

k/

® Can be solved imposing a detailed balance condition

Wkklpoo(k) — Wk/kpoo(/{/), Vk, K.



Generalizations of the random walk

® With the form of Wk «’:

P2(k) Wi PEK)r(K —k)  kPE) r(k — k)
Pk Wi PEk)r(k = k) KPE)r(k— k)’

® Interestingly independent of degree correlations

® Explicit solutions for particular forms of r(k—k’):

r(k — k) = [(K)g(k)s(K', k).

® In this case

1

P(k) = ZkP(k)g(k)/ (k)



Glassy behavior

® This kind of models represent simple examples of dynamical systems
with glassy behavior: Very slow relaxation time towards equilibrium

® Example: r(k—k") = ro exp(-p h(k))

® Arrhenius rate with energy a function of degree [ = 1/T]
® Choosing h(k) = Eo log (k) and a SF network

L 1=7+6Eo
P> (k) =

((—=1+~—BEy)

® ((z) Riemann zeta function
® ((z) only converges for ~ — BFEy > 2,

® Glass transition at a critical T — i B Fog
temperature B 4=2

® Below T, there is no steady state in the thermodynamic limit; it is
reached very slowly in finite networks, at time scales teq ~ NB/2



Epidemic processes:
I The SIS model




SIS model

® The Susceptible-Infected-Susceptible (SIS) model is the
simplest epidemiological model, capable to sustain a stationary
or endemic state

® Such as influenza, gonorrhea, computer viruses, etc.

® Definition

® Individuals are either is a susceptible (S) state or in an
infected (I) state

® Susceptible individuals become infected (S — I) with

probability v if they are connected to other infected
individuals

® Infected individuals spontaneously recover (I — S) with
probability 6

12
® Characteristic parameter: spreading rate A = 5



Numerical implementation on the SIS model on networks

® Numerical algorithm on any network defined as follows:

® At each time step, we compute the number of infected
nodes, N;, and links emanating from them, Nn

® With probability Ni/(Ni + ANn) a randomly chosen infected
vertex becomes susceptible

® With complementary probability ANn/(Ni + ANn), one of the
edges is selected and the infection is transmitted through it

® Numbers of infected vertices and related edges are updated
accordingly

® Time is increase by t = t + 1/(Ni + ANn)
® Jterate this process



Mean field theory

® The relevant parameter is the density of infected individuals of
degree k, p,(t), which fulfills the rate equation

Orpr(t) = —pr(t) + AL — pr()]k > P(K'[k)pr (t)
”

Y .
Destruction Creation
term term

® In the creation, the correct term should have been

® Probability that a susceptible site is connected to an infected
and gets the disease from it



Mean field theory

® We are thus in the situation of having an edge with and S and
an I at its extremes

P{(S,k) < (I,k)}

® Assuming lack of dynamical correlations

P{(S.k) < (I,K)} =1 —pr) P(K'|k) pr

® Decomposed in the properties of independent vertices



Mean field theory

® Complete equation is quite hard to solve, for general P(k’ | k)

® The most we can do is to perform a stability analysis, to check
for the possible presence of non-zero solutions corresponding to
an steady state: Linear stability

Oipr = —pr+ A1 —pr)k D> PK|k)pr
k./

2

—pk + Ak Y P(K'|k) pr
k/

Z Sk k' PR/
"

Jk,k’ — _5k,k’ -+ )\]{'P(k/VC) Jacobian matrix



Mean field theory

® Steady states can happen when the largest eigenvalue of Jk k’ is
larger than zero

®I.e. when

A< A = —

® where Am is the largest eigenvalue of the connectivity matrix

Cun = kP(K'|E)



Uncorrelated networks

® In uncorrelated networks, we have P(k’ | k) = k' P(k")/<k>

® Therefore we have

Cl ke = kk’P(k/)

(k)

® We can check that the only eigenvector of this matrix is vk = k,
with an eigenvalue
(k%)

A = 5

® Thus



Uncorrelated networks

® The MF equation simplifies to

c‘)pgt(t) = —pr(t) + AEO(1 — pr(1))

1
0=—Sk'Pk)p,
<k>2 (k")p

® Independent of k

® Steady states can be determined by finding the stationary
solution and looking for nonzero solutions of the equation

0 = —pi(t) + AkO(1 — pi(t))



Mean field predictions in SF networks

® Steady state solution
INAGC,

T 1+ M®

Py

® Self-consistent equation to solve

1 Me®
° =<—k>2kp(k)l+kk®

® Solution with non-zero © exist only for:

41 S kp(y 249 =kaP(k)>1
d© (k}Z 1+M\k® ZkP(k) B

A >

(k)

(k

N

L

)



Mean field predictions in SF networks

® There is a phase transition between an active (infected) phase
for A > ). and an inactive (healthy) phase for A < A_

® Absorbing-state phase transition with an epidemic threshold

P
)‘(: _ <L> Absorbing phase
(k2)
Active phase
® For SF networks P(k.) e
A A
® If

2 =4 =3 -<k2>%00 m) A =0

® Null epidemic threshold!! : Whatever the virulence A of
the epidemics, it can spread across the whole system



Mean field predictions in SF networks

® Quantitative prediction for the prevalence (total density of
infected individuals in the steady state)

in SF networks
p=> P(k)px
k

® In the continuous degree approximation (changing sums by
integrals) we have to solve the coupled equations

() = (v — D)m7~1 /OO k=200 ())

(k) 1+ kO

© L=1+IAO(N)
1+ kAO(N)

pN) = (= D

m



Case y=3

—1/mA ~1
O() = — (1 —e7t/™)
Am
=2 2/\@()\)/00 : dk
rea n KL+ EAO(N))

At lowest order

0~ 26—1/771)\



Numerical results

® Numerical simulations confirm mean field predictions

y =3,N =10°

D~ 26—1/771.)\

1/A



General v

Plk)=(y—-1)m" k™7, 2<4

O(A) = F[1,y — 2,7 — 1, —(mAO(\)) ']

p=F[l,y —1,7,—(mAO()\))™]

F[a,b,c,z] = Gauss hypergeometric function




General y

® Close to px 0, ©= 0
F[l,a,a+1,—(mAO(N))™ ]
p | — _(mAO)"
25 A(—) Y Y _1 T
sin((.wr)(m )"+ a,,z::l( ) n—a |
® Thus
pe i}
p =~ ) mA\©
v — 2

® Solution for © depends on y



General y

2<y<3

O(\) =~ Shﬁy(;_z);;ﬂ] (mA©)7~2

Prevalence
P~ 21/ (=)



General y

I<yYy<4
(’7 — 2)7" L. =
O(\) ~ AO)7 ———ml\O.
SO vy e L A v
Prevalence

P~ ()‘ - /\c)l/(‘y_S) Ae = q =2



General y

g o 4
— 9
o) T 2rre — I~ 4 e
G v—4
Prevalence

e
oureX = Ko, Igmr—)




General y: Summary

p~ (A=)’
M2<y<3
1
As=:0 5—3T,y
M3<vy<A4
vy—3 1
e = - —
m(y — 2) 2 ¥—3
MK~ >4
> DO [ B=1




Numerical results

® Numerical simulations confirm mean field predictions

vy =23, N = 10°
]
1.50 ..o.
o" 1/(3=y)
s pN}\, v
Q —2.00 F 4 .
E ” (B =1.8,\ =0.07)
S o
2.50 .
G | Simulations on
e a real Internet
3.00 it L Lo

1.60 1.40 1.20 1.00 0.80
]“f—’a‘ln‘j A=)

0.60 map



Rationalization of computer virus data

®New phase diagram with a null epidemic threshold.

®In contrast with what is obtained for regular networks, there is
now a whole region of the phase diagram in which very low
prevalence is possible

05 - . ' . :
A
04 |
03
| scale-free network
0.2 ‘_
0.1 )
.- homogeneous networks
0.0 ! 1 " i L L 1
0.00 0.20 0.40 0.60 080

= A Virus can survive
\/—/_—- in this region

Low prevalence regionl!



Epidemic processes:
II The SIR model




SIR model

® The Susceptible-Infected-Removed (SIR) model is the simplest
epidemiological model, capable an outbreak of a disease that
confers immunity

® Such as measles, chicken pox, etc.
® Definition

® Individuals are either is a susceptible (S) state, an infected
(I) or a removed [immunized] (R) state

® Susceptible individuals become infected (S — I) with

probability v if they are connected to other infected
individuals

® Infected individuals recover [or die] (I — R) with probability
0 V
® Characteristic parameter: spreading rate A = 5



Numerical implementation on the SIR model on networks

® Numerical algorithm on any network defined as follows:

® At each time step, we compute the number of infected
nodes, N;, and links emanating from them, Nn

® With probability Ni/(Ni + ANn) a randomly chosen infected
vertex becomes removed

® With complementary probability ANn/(Ni + ANn), one of the
edges is selected and the infection is transmitted through it

® Numbers of infected vertices and related edges are updated
accordingly

® Time is increase by t = t + 1/(Ni + ANn)
® Jterate this process



Mean field theory

® The relevant parameters the density of infected individuals of
degree k, p,(t), the density of susceptible S, (t) and the density

of recovered R, (t)
® Not independent: p,(t) + S, (t) + R (t) =1
® Only keep track of two

® For uncorrelated networks, the rate equations are

dp.(t - .
/(}}f( ) = —pr(t) + AESL(T)O" (1),
ISt - :
a1 = —/\/\',S';‘.(f)(-)“(’(f).
dt '
IR (t Anc(sy _ | i

dt k



Uncorrelated networks

® Assuming p,(0) very small, S, (0) =1, R (0)=0, we can directly
integrate to obtain

t
Sp(t) = e MW Ri(r) = f ok (1) dr,
0

g 1
$(1) =/ O(r)dr = = > (k= DPE)Re(1).
0 (k)

® Simpler equation for ¢(t)

— TRRAL <k>;< )P (k)e ,

® Total epidemic prevalence R = 2k P(k) R (c0) at very large times

R = Z Pk)(1 — e by,
k



Uncorrelated networks

® For OX — lilllt—,'x O(TL>

1 1
oo =1 — — — (k — 1) P(k)e "o
(k) (k) Xk:

® Nonzero solutions exist for

d 11
— (1= = k — 1) P (k)e ko 1
I ( W~ ok Db ) e
® That is, for A > A, with
(k) Similar structure as

(k2) — (k) in the SIS model



Solution for y=3

® In the continuous degree approximation

Roo =1 —2m? / e M g
= \? (—m?) ¢’Ei(—mA¢p) — e "™?(1 — dmg) + 1
® Expanding the exponential integral function in the limit of small

A
R ~ 2 M.

® Integrating the equation for ®(t), in the limit of small A

1 d 1
gy igt) ~ ¢ 1—7E—m—ln()\mgb) .




Solution for y=3

® Integrating again

Am Am

1 1
B(t) ~ —— exp (1 EPVRN T Ae-m) ,

® In the stationary regime at large times

l—vE
© —1/2m
e Y

Poo =

A

® For the prevalence

R. ~ e 1/Am
oo ™ € .



Numerical check

L —— E—

-d

R Ne—l/)\m @

°
°
Z 6 e
S .
- l_\ T B S A S
— ®
. =~ 10 F ) 4
Solution analogous to 9 L% |
the SIS model; same = °[/ | |
happens for other RPN VAR~
+ 0 20 40 6
Va|UES Of Y ) ) f() 0 S0
-12 A A ' L
2 6 10 14 18

1/



Epidemic processes:
III Immunization strategies




Immunization

® Clearly, epidemics in scale-free networks are really a problem,
due to the vanishing epidemic threshold

® Immunization is thus a necessity in order to impede the
spreading of infective agents

® Different immunization strategies
® Immunize everybody
® Usual choice in biological contexts
® Extremely expensive
® A cheaper strategy: Random immunization
® Immunize a fraction g of individuals selected
® More or less the strategy used in antivirus software

® You choose (more or less at random) whether or not
install antivirus software



Random immunization

® Computer simulations in scale-free networks

b | | To complete eradicate
08 | G——©Uniform |  the disease, we must
| immunize a very large
- 0.6 | fraction of the
S | \S\ . population; actually the
< 0.4 | 1 . whole population in the
; \ +limit of an infinitely large
0.2 - Q\@d T network (analytical
| 9 results ...)

0.0 - - A - -
0.0 0.2 0.4 0.6



Targeted immunization

® Thinking a little bit, we can devise more efficient strategies
® The bad effects of scale-free networks arise from a diverging
second moment <k?> > 1

® This divergence is obviously due to the anomalous amount of
vertices with very large degree

® A possible cure could be to immunize just those vertices of
large degree

® Targeted immunization:

® Immunize a fraction g of the most connected vertices of the
network



Targeted immunization

® Computer simulations in scale-free networks

1.0

7 The eradication of the
. J‘. 6——06 Uniform disease can be achieved
® . & Targeted _ by immunizing a very
| small fraction of the
10 [Ty vertices with the largest
el i & | number of connections.
e \, - . Actually, an exponentially
| b \&\g\g | small number of vertices
Y S—e. analytical results ...
8 s,  (analy )
0.0 :
0.0 0.2



Immunization without global knowledge

® Targeted immunization works extremely well, but suffers from a
practical drawback

® We must have complete knowledge of the network in order to
vaccinate the most connected nodes

® Other alternatives have been proposed, requiring less information

® Acquaintance immunization:

® A fraction g of nodes are selected, and asked to point one of
its neighbors

® The neighbors, and not the nodes, are immunized
® Why it works?

® High degree nodes have many edges connected to them;
following random edges will find those hubs with high
probability



Reaction-diffusion processes




Reaction-diffusion processes

® The theory of reaction-diffusion (RD) processes can be used to
model a wide variety of dynamical systems

® RD processes are defined in terms of:

® Set of particles belonging to a certain number of different
“species” A, i=1, ..., n

® Particles diffuse stochastically, jumping at random between
nearest neighbor sites

® Particles react upon contact according to a given set of
reaction rules Rj, j=1,...,r

® Standard setting: Chemical reactions
® But they can be used to model general kinds of processes



Reaction-diffusion processes

® Examples:
® Diffusion-annihilation process
® Single type of particles A
® Particles diffuse, with a diffusion coefficient D
® Particles experience the reaction

A+A 250

® SIS process
® Two types of particles S and 1
® Particles diffuse, with possible different coefficients Ds, D:
® Particles experience the reactions

s+1 201
;] &S



Two basic formalisms

® When considering dynamical processes on complex networks
(or reqgular lattices), two different perspectives are possible:

® Fermionic systems:

® Systems with some “exclusion” principle, that limits the
number of particles on each vertex

® Usually, occupation number n;(t) = 0, 1

® Number of particles inside each vertex is limited to O
or 1

® Bosonic formalism:
® No “exclusion” principles involved
® Occupation number n(t) =0, 1, ... 1

® No limitation in the number of particles on each
vertex

® In some cases, the correct formalism arises in a natural way



Fermionic systems

® Example: Small-scale epidemics
® Spreading in social networks

Diffusion and
(\ Interaction

o
O

Healthy
individual
Infected
individual

Vertices are individuals

Individuals can be only in
one state, healthy or
infected

Each state can be
represented by a
different kind of particle

Interactions take place
between connected
individuals (particles)



Bosonic systems

® Example: Large-scale epidemics
® Spreading among cities or countries

Diffusion ® \ertices are cities or
countries

® C(ities can host many
individuals

® Interactions take place
inside vertices

O Vertex ® Particles move from
go vertex to vertex

@ Healthy ® Traveling
individual
éy Infected

Interactions

individual




Limitations of both formalisms

® In other cases, there is freedom in the choice of the formalism

® In choosing, consider that both formalisms have some
advantages and limitations on complex networks

® Fermionic formalism:

® Models generally easy to devise and simulate
numerically

® Analytical theories must be tailored on a case by case
approach, based on the particular implementation of the
model

® Usually simple to solve analytically

® Difficult to implement interactions of more that two
particles



Limitations of both formalisms

® Ex: What happens with 3 particle interactions?

A+B+C— D

® Solution 1: Use “intermediate” particles

A+B+C =D = {AJFB -

I+C — D
A I L D
- -

® Arbitrary and somewhat artificial

109



Limitations of both formalisms

® Solution 2: Interaction among three or more vertices

® Difficult to implement numerically and not general
® Interactions depend on the degree of the vertices

110



Limitations of both formalisms

® Bosonic formalism:
® No limitation in the order of the interactions

® Take place inside vertices and do not depend on their
connectivity

® Numerical implementation bit more difficult
® But however more general

® Analytical theories can be developed for general classes of
models

® Not so easy to solve
® Due to the generality of the interactions

111



Reaction-diffusion processes:
I Fermionic formalism




Diffusion-annihilation process

® Choose simplest case: Diffusion-annihilation process

A+A 250

® Particles perform an uncorrelated random walk
® Sequential update, to avoid undefined events
® When one particle lands on top of another, both annihilate

= -




Heterogeneous mean field theory

® Dynamical equation for the relative density of particles in the
vertices of degree k, p,(t)

® In general networks:

Dpi(t) P(K'|k) . P(K'|k)
= = Apk(t) — ARpk(t (T k(1 — pp(t (1
o = —Apk(t) /\Am(); Pk () + AK] m()]%j Pk (1)
\ Y~ — N\ 7 S— —_—— 7
Destruction Desfaction Credtion
term term term
by diffusion by reaction by diffusion
w @ A- 2 J » k’- k v pd A- k
e K L ” K b L

® Note: we are neglecting again dynamical correlations between
two vertices!!



Approximate solution in correlated networks

® General equation in correlated networks (A = 1)

dp. P(K'|k
/)(ll)‘f(t) = —pr(t) + k[1 — 2pi(1)] Z}‘: (L./l )

® At very large times, p, becomes very small

Pr(t)

® Diffusion-limited regime (negligible interactions)
® We can neglect the second order terms in the rate equation
Opr(t) Pk |A
crames —pr(t) +k Z i (
® Old diffusion equation!!
® We have thus the steady state solution

(t) ~ { Note the difference
i) (k>p( ) with the diffusion
problem



Approximate solution in correlated networks

® Equation for the total density p(t) = Y, P(k) p.(t)

d;jlif) — 2 S P(k)pi(1)Ok(1).

® Where we have used the degree detailed balance condition

® Inserting the low density approximation, we obtain a solution
valid for any correlation pattern

dp(t) _ o2 () k 1.5 ¥

_ —_— ) {
Dl [ . » = X

dt pit) (k)2 »w  plt)  po (k)

Solution only for finite networks
finite <k®> (more later)




Uncorrelated networks

® Mean field equation for uncorrelated networks (A = 1)

dpi(t) _ k
i~ o)+ el = 2ok(@)]e(t)

® Quasi-stationary approximation

Qupi(t) < pi(t) =m0 =50

® Final equation for the total density j K
dp(t) _ _,p(t)? kP (k)
dt (k)2 4= 1+ 2kp(t)/ (k)



General v

R — ———

® Infinite networks
P(k)=(y=1)m"'k?,

M=—2p(t)z(7— l)m’”'foc

dt (k)? 1+ 2kp(1) k) o

=—p(F(1,y=2,y—1,—(y— 1)2(y=2)p(?)),

f”")-l d=
= :
i) zZF(l,y=2,y=1,-(y=1)z/2(y-2))



General y

® Asymptotic expansion

F(1,y-2,y—1,—2)~z*"7, z—x,

® General solution

L s tl/(,y—2)
p(1)



General v

® Finite networks of size N
o () =~ — PO/ (E)
S 1+ 2kp(t)/ (k)

2k .’\"'A p s

(k)
:
() N I 2¢k)
O = =2 BP(k) = p()—=. = — ~ ‘
)= (i P =07 o(t) (k)
® In scale-free networks W

Ry= 2 KBP(k) ~ kN7 ~NO-D2

k=m



Summary for general y

® For SF networks we obtain:

® Solution for infinite networks!Y — o

1 1/(~—2) » Density decays with time as a
ST ~ TN power-law with an exponent
p(t) depending on the degree
distribution
® Solution for finite networks
N <00
1 PN % Above a certain cross-over
t >t (N) » —— ~ NGB=)/2 time, linear behavior with a
p(t) slope growing with the

network size



Numerical results

® Numerical simulations confirm the predictions of mean field
theory

]() T T TTII”’I -4 ITT]]' T TYTI' T T TTIITT' 1 140, 4:080
EL i 3
He(t) ]
< 10 =
Gl
\
' —
>, -
< l (3—7)/2
= o Y=3 o(t) Sl Ly
B y=275
o Y=2.5 J
]()l’T | 1 lllllll | | l.ll“l A el l.llll - | LA llllll | LA LA .
10" 10° 10° 10° 10° 10°



Numerical results

L —

1 ,
® Further check: for finite networks — ~ NGB=M/2y4

. p(t)
®Ify=2.5 p(t)

10 20 30



Reaction-diffusion processes:
II Bosonic formalism




Bosonic RD processes in complex networks

® Reactions take place inside vertices

® Only interaction between vertices is by diffusion (random
jumping) of particles

® Same scheme as in Euclidean lattices: the only difference in
behavior is the different topology in which diffusion takes
place

® Enough to induce relevant differences

Reaction



Bosonic HMF formalism

® Starting point for analytical treatment: MF formalism

® Particles of different species A , a=1, ..., S
® Particles diffuse (jump to nearest neighbors) with rate D
® Reactions R, r=1, ..., R given by the stoichiometric equations

S S

Z daAa e Z'ﬁ 0 ED )8 T =L R. M. = Reaction rate

u:l HZI

® MF formalism based on rate equations for the partial densities

p,, (t) of A  particles in vertices of degree k

® Two terms

® Diffusion

® Random jumps between adjacent vertices
® Reactions

® Modeled by the law of mass action



Bosonic HMF formalism

| Tr— —

® For a complex network characterized by P(k) and P(k’|k)
® Partial densities

a{)a?k( ) ”
— _ ~ —_——
—_—
Diffusion Law of mass

action
® Total densities

o
f!;f —Z}} A, ZP H[Iﬂjk

® Equation independent of the correlation pattern

® General rate equations, valid of any RD process



One-species RD processes

® Simplest case S=1 (one single species of particles)
® MF rate equation becomes (D = 1)

Opr(t) P(L o) |
ot :"'; e (t) + ST lpu(t)], ’a{f = p(t) + > Ty PR)[or(t)]",

q=> >0 ) q =0 k

[',=—0(q.1 —}—Zp)\r‘)qg

® S=1 RD processes can be classified in two main classes
® Steady state processes

® Posses one or more steady states at large time, with
possible phase transitions among them

® Continuously decaying processes
® Particle density decays continuously with time



Steady-state bosonic RD processes

® Possibility of steady states and phase transitions
® Linear stability analysis
® Jacobian matrix for I'y = 0 (no spontaneous particle creation)

kP(K|E)
Koo
® Unique eigenvector v, =k and eigenvalue
A=T1+1=) p"A\d(¢", 1)
® If there are steady states and a phase transition
® A > 0 = steady state p = 0: active phase

® A < 0 = steady state p = 0: absorbing phase
® Absorbing state phase transition

L’ﬁ'ﬁ" — ]__"11"5(1,.';, L} -+

® Threshold A. = 0, independent of topological heterogeneity



Diffusion-limited regime

® Information can be obtained for general S=1 RD processes in
the very small density regime

® Imposing 9, p, (t)=0 in uncorrelated networks, and considering p
very small, I
P >~ — -{:/\':}Fll)'

® Inserting in the equation for p, we obtain, for finite networks

(R N
P=\ Tkam)IT, | ‘ ’

® g,,=smallest reaction order

® Homogeneous MF solution, with a depressing factor
< kdm>-1/(am-1)



On scale-free networks and the value of y

® For uncorrelated scale-free networks, P(k) » k-

p ~ ".\7_(([111_{"1_7)/(([”:_1) ‘,\1/((1171—1).

® Topological effects play a role fory < q,,+1
® Fory > g.,,+1, homogeneous MF theory applies

® Conclusion: The previous famous threshold y = 3 for the

observation of topological effects arises from considering
only processes with order q,,=2

® Percolation, contact process, epidemics, Ising model, ...

® In the general case, a threshold y = g, +1 is to be expected!



Monotonously decaying RD processes: Diffusion-limited regime

® For any correlation pattern, and keeping only linear terms

9 (1
{ﬁ‘a()&_)h AZ “’!' -

Ot
® Performing a quasi-static (adlabatlc) approximation, we can
approximate Lo (4
p(t)
pr(t) >~ s

® Substituting into the full equation for p(t), for finite networks,
with any correlation pattern

- . L I —lf{qm—lj
- [‘-’fm - l)‘rqﬂi ‘ (1}._'_-?”1;:: —lf';{‘-]'rn_l}
‘U ( 1’- ) -~ ( ':: l. :;. G f- !

® Homogeneous MF solution, with a depressing factor
<kdm>-1/(am-1)



Specific examples

® In order to go beyond the diffusion-limited approximation,
specific RD processes must be considered

® Steady state processes
® Branching-annihilating random walk (BARW)

( A i, (/)

A p+DA



Bosonic BARW

® General results

® For any correlation pattern, the BARW exhibits an absorbing
state phase transition at a critical point A, = u. =0

® Diffusion-limited regime (in uncorrelated SF networks)

TRAVNE 1/(g—1)

(EYp(1 — pp)|? hy ‘ gtley

'” ~ ([‘ jai’q\ i! ] I“J-; [‘-]'_1,:' ~o _L\ 2(g—11 J”J-;l:\l'.}—lzll
(k1)q

® General behavior for finite networks



Bosonic BARW

® Particular case q=2
® Steady-state solution (9, p=0) for uncorrelated networks

‘T1| _ _ 4‘Fg‘ﬂ£:
ST N BRI

® Particular square root behavior at large densities

® If p < py, With J"f"ﬁ" —1. where k_ in the network cutoff,
then -
k
Pk ~ — \A’Fl .

® The diffusion-limited regime is recovered



Bosonic BARW

R——

| eee——

® For infinite networks, within the continuous degree
approximation, self-consistent equation for the density

[ 2(y—1) [4|z|m 1 3 1 kYT |?
— | ll —1+ ‘(! ) | -I”I./)) XF[___eA/'_.EsA,"__-_< >| 1| ]
2|1 2y —3 \ (k)|T'1]? 2 2 2 4T3 |mp

® Final solution for small p ()
D e

® We recover the critical point u.=0
® In finite (uncorrelated) networks, it should be observed for
k27
P

~ N—(r—2)/2

/1 > /lﬂx -



Bosonic BARW: Numerical check

| — R—

® Partial densities p, in the steady state, for p=q=2

1 —2u S8Apk
s = —1 1 , A
k=N ( " \/ - 2,1)'—’)

- IAp < 1 — 20)2 (k)
G (pr) = 60l | wif| AETER NN
1 — 2u SAp

10°

® Thus

|III|T|'|_




Bosonic BARW: Numerical check

® Infinite network solution not observable in finite networks
® For finite networks q=p=2
/C) ~U ln\r'_- (:3‘_-’7’)//:2/Lt

!
—eN=10" 4+ N=3*10" =
=N=3*10"  N=10 —

N=10" B ﬁ__;_:_-l__kl =

10
=10

107

S, [ reme
[ IRRY

o=

10

(3-7) 12
pN

10

L IIIIIII| I IIIIIII| T T

10



Specific examples

® In order to go beyond the diffusion-limited approximation,
specific RD processes must be considered

® Monotonously decaying processes

® Diffusion-annihilation process (DA)
® BARW with p=0

g A L’ 0.



Bosonic DA

® General results

® For any correlation pattern, in a finite network, att >> 1
density is dominated by the diffusion-limited regime

N i I:.-" ”q"- —j.J.-"'(q—j_} . o |
{)(f) ~ ( ('-'j };fj? Jn ;} ) t—l’f[q—l} i~ i,-‘\:?'— 2;1_1; t_l,f{q_lj
()



Bosonic DA

® Particular case q=2
® Performing the adiabatic approximation, partial densities

given by
pr(t) = 3T (—1 + \/1 + l(l:)l p(f))

® Again, particular square root behavior at large times

(k)
o If P < Py, with 7x = A|T,|

cutoff, then )

kot where k. in the network

kp(t)
)

Pr(t) =

® The diffusion-limited regime is recovered



Bosonic DA

® For infinite networks, within the continuous degree
approximation, we find the self-consistent equation

dp 1 N v —1
e P T ; et
2|F2| |F2|(2’}’ —3)

2 270 27 ATy|mp

® Final solution for large t

p()es [Ra|F=2g= 1004 5 X¥=ag=tilase

® In finite networks should be observed for

<ty ~ k12 ~ NO=2)/2



Bosonic DA: Numerical check

® Partial densities p, in the steady state, for g=2

1 SAk
() = — | —1 1+ ——plt
pr(t) ™ ( +\/ + B pl ))
® Thus
Golpr) = [(4/\pk (t) + 1)* — 1] k) =k
8Ap(t)
E : e
= 10°F e
o T~
10 — 1
._.lp(t);o.loglolllll | I | L) ||||I
N 2F —ap()=0021
2 10 [T — p()=0.011
)l — p(t) = 0.0070
100 - | 1




Bosonic BA: Numerical

® Infinite network solution not available in finite networks
® For finite networks for any ¢

o~ A(N, )~V @=D4=1/(a=1)

Correlated

1005 T T T TTITT T T TTTTIT] |E|||||||| T T T TTTTT T T TTTT SF ne'l'wor'ks
107 R
- T ]
_'3'_ m | ||.|t|u1 | |
c 107E 10* 10° 3
= - 13 ]
i ot 4
10°F - E
/ 12 i

t e

: \ q=2 q=373
Uncorrelated |5 L wl mul X :
0 10 10 10 10 10

SF networks _ t




Bosonic BA: Numerical

® Additionally, for the numerical prefactor

'_][_-',l2 T T T T TT7 T T T T 17717 T T T T 7717
® data PR
E : , . g
= = -—- linear fit o ® =
Z 10°F o ¥ N
- 1[:' 8 }
= o * _
[ ] - “-]f — 2 =
E 5
2r Ol . | ]
10 5
10’ 10° 10 10"
T | T T T
10" 2
e " ]
= 0 ..
= 10F o =
N ° v=3.0 3
[ & * / ]
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Ordering dynamics




Glauber dynamics at T=0

® Ordering dynamics that can model the evolution of systems of
social agents (e.g. the opinion of agents with respect to a
certain issue) in terms of a binary variable that is updated in
response to the pressure of the peers of each individual

® Definition:
® Ising variables ( o; = + 1) in the vertices of a network

‘ . : i A
Spins are updated as a function of the local ﬂelhl = 3" ay0;

J
g; = +1 //,(/:‘ - U

g; = —l //(/t < )

g = +1 With probability 1/2  /i,(t) = (.



Mean field theory

® Dynamical equation for the probability that a vertex of degree k
is in a +1 state q,(t)

(jl([k ( t )
dt

= —q(t)Prob|h; < 0] — qx(t)Prob|h; = 0]-

S

\Ivlr—

——
Destruction terms

'vl‘—‘

-t= (l - (];‘.(f))l)l'()l)[h/‘- > ()] -+ (l — ([A( ))l)l()])[h/ — ()]

N— I
———

Creation terms

dqy(t 1
qg}f ) = —qi(t) + Problhy > 0] + QProb[hk = 0].



Uncorrelated networks

® Define probability that a vertex is connected to a neighbor in
state +1 1 Z i

® Independent of the state of the original vertex

® The local field can be zero only if k is even and exactly half of
its edges point to +1 spins.

® Thus
|)|’1>|)[//;.. ()] ( /./'»., )(L); :‘l (L)»; -

® The local field can be positive when more than half of its edges
point to +1 spins

® Thus A

Problhy > 0] > ( /{ )(.)'ql Q)

(=|(k+4+1)/2



Uncorrelated networks

® Final equation

L.
' , - ll' P/ R A
(_l(ﬂ\(f) — —(IL(]‘) - Z [1 = %()f,k/"‘.?] ( / ) (JI(J_ - (2)‘\ {

dt (=[k/2]
® And for Q 0 ‘ b0
= —0) + V().
FAL 1 : '. 1 ¢ }v £y \ ke=?
i [..Qv} — T Z P];w | Z L.l 5(\(;_2] / Q l‘vl e Q,J :
k =[k/2 ;

® Very tedious equation to solve... but it can be done
asymptotically



Mean field predictions in SF networks

® The systems always orders (all spins +1or-1att=1)

® Ordering time t, 4 starting from symmetric initial conditions
(disordered system, with zero magnetization)

® Time t_4 till achieve a given magnetization
® For 2 <y<5/2,t,  decreases with N (network size)

f()].(i £ ."'\v (' ‘"_“."-""'2),,-"’2 ll] j\v
® Fory > 5/2, t 4 increases logarithmically with N

tord ~ In N



Numerical results

R
® Not all systems become ordered
0
10 -
7 - .
z o
20 7
= . "
5 10 %
% -——-‘4.'/ “_’V/
— — i
E e —e
£ 107k = 4
P a7
: \t."’ -{M/I’A/
™
3 s L 222, P
10° 73 3 3 s o
10 10 10 10 10
N

® In the thermodynamic limit, no network is able to order,
whatever its value of y



Numerical results

® Ordering time t, 4 restricted to those runs that get actually
ordered

|
10§

( 0 0 ™
N 10 10 10 10 10
N

y=4>5/2 y =2.25<5/2

® Fory > 5/2 does not grow logarithmically, but as a power
law

® Fory < 5/2 does not decrease, but increases instead



Why mean field does not work?

® The most relevant mean field assumption turns out to be the
following:

® The probability that a spin o; is connected to a +1 spin (the
dynamical variable Q), is independent of the state of o;

® Numerically, instead strong dynamical correlations appear in the
system, invalidating the mean field approximation!!!

| ———— = -

Probability that a +1 spin j’-—. cely b eguive wpums| 7 C
H = ) numerncal 3 '

is connected to a +1 spin O8] anatyuca | ]
. D6 ,"

o

D (1/24v)
|
|
|
’

n.»l—/“\ ) a
Probability that a -1 spin aL \ :7 / J
Is connected to a +1 spin - /

- A A A AAAAA-‘ -: . -! A A AbJ ()
10 10 10 10 10



Beyond heterogeneous mean
field theory
I Quenched mean-field theory




Beyond HMF

® HMF is a simple and tractable theory, but it implies two strong
assumptions

® Neglects dynamical correlations
® Neglects the actual structure of the network
® Annealed network approximation

® As we have seen, dynamical correlations can lead to the complete
breakdown of HMF theory

® Introduction of dynamical correlations is a highly complex task
® Although doable is some cases

® Introduction of the actual network structure can be done by means of
the Quenched mean field (QMF) theory

® Let us see how it works in the case of the SIS model



QMF theory for the SIS model

® Continuous time master equation approach for the probability pi(t) that
vertex i is infected at time t [p curation rate, 0 infection rate]

pi(t + At) = (1 — pAt)pi(t) + Qi(t)[1 — ps(1)].
® Qi(t) = probability that vertex i becomes infected
Qi(t) =1—] ] [1 —6AtA;p;(1)]
J
® In the limit At — 0, defining A =06/

pi(t) = —pi(t) + Al — pi(?) ZA’LJPJ

® Evident cancelation of dynamical correlatlons specially explicit in
the second term



Threshold in QMF theory

® Linear stability analysis
® Linearized equation:

pi(t) = —pi(t) + A Z Aijp;(t)

® Associated Jacobian: J

Jij — —52'3' + )\Am

® Solution pi = 0 unstable when the largest eigenvalue of ] is
positive
® Threshold QMF

1

— AN = largest eigenvalue of the

\@ME _
C T . :
AN adjacency matrix



Comparison of QMF and HMF thresholds

® For non SF networks, both thresholds are finite in the limit N = oo
® In SF networks we observe different scalings with N:
® Size dependence in uncorrelated networks through largest degree

kmax
o kmax n N1/2, YS3, kmax n Nl/(Y_l), Y>3
.kmax_’ oo for N =& oo

® HMF threshold (directly)

\HMF _ k) k) v <3
¢ (k?) | comnst. >3

® QMF: Use mathematical results An ~ max|\/knaz, (E*)/ (k)]

.
1 k) k1S 2 <y <5/2
)\EQMF =~ </€2> max 8

A
N |\ 1/ VEmas v >5/2




Which theory is more accurate?

® High precision determination of the critical point: The susceptibility
method

® Define susceptibility

® For fixed N, as a function of A, susceptibility shows a peak at Ap(N)
® In systems with constant Ac, peak

. 6 | .
scales with N ! . N=10376

Ap(N) = Ao ~ N~H7 T s N

p c 2 -

A N=3526

® Position of the peak tends to T o NS

the critical point L N=628

® Height of the peak also scales 2 -
(N) ~ NY/¥ 4

0;,1 A




Numerical determination of the epidemic threshold

® We will assume the same behavior in the SIS model in
networks

®E.qg.
Ap(N) = Ae(N) ~ N7

® The peak provides an estimate of the critical point, with an
error that depends on N but becomes small for large network
size

® Susceptibility height at the peak should also depend on
network size /
Xp(N) ~ N7



Numerical Check: Annealed networks

10"
- a) Y = o 10! .
i 2.25 N X0 In annealed networks, HMF
B A eax1ot || theory is exact.
< . < 256x 10" | 7 Ideal benchmark
<4 A f 1024 x 10*| ]
< AA o 7
T ; ° |
0! . "y
A Nl B R IR AR
Well defined susceptibility A— —A———— A A A
with a peak scaling with 10'F

network size

10'2 — G—OKP(N) [v=2.25]
L man T [¥=2.25]
Perfect agreement of |00 A M) [¥=3.50]
theory with susceptibility I A—AACHMF [v=3.50] b
estimates of thresholds )
10'3 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII|
10° 10* 10° 10° 10’



Quenched SF networks y < 5/2

10 &

)\CHM -~ )\?MF ~ k_’y—?)

max

Both HMF and QMF predict {¢?
the same scaling form of
the threshold

/)
N4

N=10

10° 107 5 107

- 1 1 1 11 II| 1 1 1 11 II| 1 1 1 111 I| 1 1 1 | I |
10
10° 10" 10° 10° 10’

N

Very good agreement of theory with
susceptibility estimates of thresholds at
large N



Quenched SF networks y 5/2

Quality of data in this case
allows to estimate the
scaling exponents

ps ~ N~
X ~ N
XN ~ N

Additional comparison with

xnv = N[{p*) = (p)”]

Fitted exponents: pg ~ N6 Fulfill scaling relation

XN ~ X X Ps



Quenched SF networks 5/2 <y < 3

M 3 y = 2.75 -0 MN)
v N E-g 1 O _
>‘c ™ kmaac 10 i kCHMF .
QMF —1/2 I : ]
)‘c ™~ kmax i ]
I ]03I§| TTTT T T T T 177 T
HMF and QMF predict a 102;_ j )

different scaling of the -
N=10

threshold with network size 10 -
N=10
0k Wk oA

T ||||||T|
ST N R a6}

10 210"

10° 10" 10° 10° 10’

N

Numerics do not conform to the HMF behavior, specially for large N
QMF theory provides instead the correct scaling of Ac with N, but with a
different prefactor (accuracy of estimate ~ 30%)



Quenched SF networks y > 3

2

10°F

MM const.

)\QMF N k_l/Q

maax

HMF predicts a finite
threshold and QMF a 104
vanishing one -

More complex situation:

e Small networks lead to a well defined peak for large of A, at a position
quite compatible with the prediction of HMF: Ac constant for large N,
although with large fluctuations

e For larger N, another feature emerges for small A, giving rise to a
secondary peak for the largest sizes considered



A new numerical approach

® We need a different approach to compute the critical point fory > 3
® Look at the lifetime T of epidemic outbreaks

® Below A, T is finite and small; above Ac, T is infinite (in infinite
networks)

® That's a problem...
® Fix it looking at the coverage C (fraction of different nodes infected)
® Below A, C is small; above A, C=1
® Idea: Look at T", time till either the infection dies, or C = C*, fixed
® Below A, T" ~ T and is small; ARRERRREN ERRRRERREN RARRRRRLRN R =

above Ac, T is small (infection 2 10°F y=3.5 = N=104
propagates very quickly) = - N—106
® Right at A, T*should show a = 10°[ B ]sz&
peak, that allows to determine 2  E O E
the epidemic threshold o 10°F N=10"7
@©

[ | || | | || LIttt
100005 01 015 02
A



New threshold for SF networksy > 3
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® The match is not exact, but as in the case of y < 3, the scaling
of the threshold is correctly predicted by QMF



Further improvements
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® More complex theories, including long range dynamical
correlations, can give better approximations to the numerical
threshold

® In any case, they represent corrections: The correct scaling
is already given by QMF theory



What we have not seen ...




Other perspectives, not touched considered here

® Effects of non-trivial correlations
® Hard task, some results available
® Effects of clustering
® Doable in simple cases: Percolation
® Effects of long-range dynamical correlations
® Doable in some cases, such as SIS
® Dynamical processes on small networks
® HMF will not work

® The effects of a non-static network: The topology (edges)
changes with time

® Temporal networks
® Coupling between dynamical processes and network dynamics
® Doable with simple models



