
Dynamical processes on 
complex networks

Romualdo Pastor-Satorras
Dept. Fisica i Enginyería Nuclear

Universitat Politècnica de Catalunya
Spain

http://www.fen.upc.edu/~romu

http://www.fen.upc.edu/~romu
http://www.fen.upc.edu/~romu


Bibliography

Course slides
https://www.dropbox.com/s/036ab1tjwzhtgpl/WarmUpECCS.pdf

Reviews:
S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes
Critical phenomena in complex networks
Review of Modern Physics 80, 1275 (2008).

Books:
A. Barrat, M. Barthélemy, and A. Vespignani
Dynamical Processes on Complex Networks 
(Cambridge University Press, Cambridge, England, 2008).
M. E. J. Newman
Networks: An Introduction
(Oxford University Press, Oxford, England, 2010).

https://www.dropbox.com/s/036ab1tjwzhtgpl/WarmUpECCS.pdf
https://www.dropbox.com/s/036ab1tjwzhtgpl/WarmUpECCS.pdf


Summary
1. Introduction

a. Networks at the very basic
2. Motivation: 

a. Epidemic spreading of computer viruses
b. Large-scale pandemic forecasting

3. A simple model with an exact solution: The random walk
4. Heterogeneous mean-field theory
5. The random walk revisited

a. Extension of the random walk
6. Epidemic processes

a. The SIS model
b. The SIR model
c. Immunization of complex networks

7. Reaction diffusion processes
a. Fermionic formalism
b. Bosonic formalism 

8. Ordering dynamics
9. Beyond heterogeneous mean-field theory

a. Quenched mean-field theory
10.What we have not seen ...



Introduction



Dynamical processes in complex heterogeneous substrates

Many dynamical processes of large theoretical and practical interest 
take place on top of complex heterogeneous systems

These are really complex systems, and complex dynamical processes

Dynamical Process Substrate

Spread of diseases Social Systems

Transport of information packets Internet

Transport of nutrients/energy Food Webs

Spread of information/rumours/
opinions

Social Systems

Transport of people/goods Transportation Infrastructures

Spread of digital viruses Communication Infrastructures



Dynamical processes in complex heterogeneous substrates

Interestingly, many of this substrates can be represented as a complex 
network

Internet

Food webs

aspects of society with the infrastructural substrate
is becoming available (1–6). Analogously to what
happened in physics, we are finally in the position
to move from the analysis of the “social atom” or
“socialmolecules” (i.e., small social groups) to the
quantitative analysis of social aggregate states, as
envisioned by social scientists at the beginning of
the past century (7). Here, I refer to “social ag-
gregate states” as large-scale social systems
consisting of millions of individuals that can be
characterized in space (geographic and social)
and time. The shift from the study of a small
number of elements to the study of the behavior
of large-scale aggregates is equivalent to the shift
from atomic andmolecular physics to the physics
of matter. The understanding of how the same
elements assembled in large number can give rise,
according to the various forces and elements at
play, to different macroscopic and dynamical
behaviors opens the path to quantitative computa-
tional approaches and forecasting power. Yet at the
same time, the study of social aggregate states
present us with all the challenges already faced in

the physics of matter, from turbulence to multi-
scale behavior.

Reality Mining and Proxy Networks
The level of information flow regarding techno-
social systems is not just due to advances in
number crunching power of modern computer
processors. Insights into the nature of the inter-
links between people and technology and the dis-
solution of boundaries between the cyberworld
and our real-world social activities are changing
our accessibility to data, leading to “reality-mining,”
which has been defined as the collection of
machine-sensed environmental data that are re-
lated to human social behavior (2). A prime ex-
ample of the people/technology interlinkage can
be found in the analysis of humanmobility. In the
past, approaches to human interactions and mo-
bility have mostly relied on census and survey
data, which were often incomplete and/or limited
to a specific context. Despite advances in the study
of human transport (8, 9), this lack of data has
hindered the construction of a general framework

of humanmobility based on dynamical principles
at the individual level with the ability to bridge spa-
tial scales, from small communities to large urban
areas and countries, in a bottom-up perspective.
However, in pioneering work, Brockmann et al.
(4) showed that popular Web sites for currency
tracking (such as http://en.eurobilltracker.com
and www.wheresgeorge.com) collect a massive
number of records onmoney dispersal that can be
used as a proxy for human mobility. This work
opened the path to the general exploitation of
proxy data for human interaction and mobility
(10). Analogously, modern mobile phones and
personal digital assistants combine sophisticated
technologies such as Bluetooth, Global Positioning
System, and WiFi, constantly producing detailed
traces on our daily activities (2, 11). For instance,
in a recent study, Gonzalez et al. (6) used mobile
phone data to track the movements of 100,000
people over a 6-month time span. Furthermore, it
is now possible to use sensors and tags that
produce data at the microscale of one-to-one
interactions (1, 2).
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Fig. 1. Multiscale properties of mobility networks. On the left, we report the
probability distribution P(s) for the traffic, measured as the number of traveling
individuals, on any given connection, of three different networks: (A) the con-
tinental U.S. airlinenetwork, (B) the continentalU.S. county commutingnetwork, and
(C) the mobility among telephone tower cells in a major urban area. In all cases, the
distributions are highly skewed and span from three to seven orders of magnitude.

On the right, we show the illustration of the continental U.S. airline network (D) and
the commuting network (E) among major census areas. The color scale from yellow
to dark red identifies the traffic flow magnitude in logarithmic scale. The airline
network is made mostly by long-range connections as compared with a gridlike
ordering of the commuting network. The daily average flow of the commuting
network is one order of magnitude larger than that of the airline network.
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Pushing Networks to the Limit
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Dynamical processes in complex heterogeneous substrates

In order to overcome these complications and obtain 
information about them we can proceed to make to several 
simplifications:

Represent the complex substrate in terms of a complex 
networks (simple collection of points connected by lines)
Represent the true dynamical process as a discrete 
stochastic dynamical system (sort of a cellular automata)

Different levels of realism in the description of the complex 
network and in the description of the stochastic system can 
allow for different levels of accuracy in theoretical/numerical 
predictions of dynamical behavior



Purpose of the lectures
We will focus in the study of simple (but not trivial) dynamical 
processes

Non-equilibrium processes only

We will focus on networks with simple topological properties
Will see what this means right now

You will learn how to solve analytically these dynamical processes, 
within certain approximations (mean-field theories)

We will see how these approximations sometimes fail and why

You will (hopefully) learn some “tricks of the trade”

Final objective:
You should be able to attack and solve other models using the 
tools presented here



Introduction
I Networks at the very basic



Complex networks: Strict characterization

Network given by the 
Set of vertices V={1, …, N} 
Set of edges  E={(i,j)}

Fully characterized by the adjacency matrix

We will consider simple, non-directed networks (aij = aji)
More realistic cases:

Directed nets, weighted nets, etc.

aij =

�
1 if (i, j) � E
0 if (i, j) /� E

Vertices

Edges



Complex networks: Statistical characterization

Alternative statistical characterization in terms of some 
statistical distributions

Degree k of a vertex:
Number of other nodes that are connected to it

Degree distribution P(k): 
Probability that a randomly chosen vertex has degree k



Empirical observations

P (k) � k��

Most real networks have a degree distribution scaling as a power-law3

1 5 50 500 5000

1e
−0
7

1e
−0
5

1e
−0
3

1e
−0
1

Degree

Fr
ac
tio
n

Global
U.S.

(a)

1 5 50 500 5000

1e
−0
4

1e
−0
3

1e
−0
2

1e
−0
1

1e
+0
0

Degree

Fr
ac
tio
n

Global
U.S.

(b)

Figure 1. Degree distribution pk. (a) The fraction of users with degree k for both the global and
U.S. population of Facebook users. (b) The complementary cumulative distribution function (CCDF).
The CCDF at degree k measures the fraction of users who have degree k or greater and in terms of the
degree distribution is

∑

k′≥k pk′ . For the U.S., the degree measures the number of friends also from the
United States.

The Facebook Graph

Degree distribution. A fundamental quantity measured repeatedly in empirical studies of networks has
been the degree distribution pk. The degree k of an individual is the number of friends that individual
has, and pk is the fraction of individuals in the network who have exactly k friends. We computed
the degree distribution of active Facebook users across the entire global population and also within the
subpopulation of American users. The global and U.S. degree distributions are shown in Fig. 1, displayed
on a log-log scale.

Because the distribution for the U.S. is quite similar to that of the entire population, we focus our
attention on the global degree distribution. The distribution is nearly monotonically decreasing, except
for a small anomaly near 20 friends. This kink is due to forces within the Facebook product to encourage
low friend count individuals in particular to gain more friends until they reach 20 friends. The distribution
shows a clear cutoff at 5000 friends, a limit imposed by Facebook on the number of friends at the time
of our measurements. Note that since 5000 is nowhere near the number of Facebook users, each user
is clearly friends with a vanishing fraction of the Facebook population. Reflecting most observed social
networks, our social relationships are sparse.

Indeed, most individuals have a moderate number of friends on Facebook, less than 200, while a
much smaller population have many hundreds or even thousands of friends. The median friend count for
global users in our study was 99. The small population of users with abnormally high degrees, sometimes
called hubs in the networks literature, have degrees far larger than the average or median Facebook user.
The distribution is clearly right-skewed with a high variance, but it is notable that there is substantial
curvature exhibited in the distribution on a log-log scale. This curvature is somewhat surprising, because
empirical measurements of networks have often claimed degree distributions to follow so-called power-

by ki Tð Þ~N 1{e{Tmgxi=N
! "

. It can then easily be shown that the
degree distribution PT(k) of the integrated network at time T takes
the form:

PT kð Þ*F
k

Tmg

# $
, ð2Þ

where we have considered the limit of small k/N and k/T (i.e. large
network size and times). The noticeable result here is the relation
between the degree distribution of the integrated network and the
distribution of individual activity, which, from the previous equa-
tion, share the same functional form. This relation is approximately
recovered in the empirical data, where the activity potential distri-
bution is in reasonable agreement with the appropriately rescaled
asymptotic degree distribution of the corresponding network (see
Fig. 4-A). As expected, differences between the two distributions
are present, due to features of the real network dynamics that our
random model does not capture: links might have memory (already

explored connections are more likely to happen again), social rela-
tions have a lifetime distribution (persistence) and multiple connec-
tions and weighted links may be relevant. Neither of these effects is
considered in the model. We report some statistical analysis of those
features in the Supplementary Information as further ingredients to
be considered in future extensions of the model.

Dynamical processes in activity driven networks. Recent research
has highlighted the key role of interaction dynamics as opposed to
static studies. For example, an individual who appears to be central
by traditional network metrics may in fact be the last to be infected
because of the timing of his/her interactions30,43. Analogously the
concurrency of sexual partners can dramatically accelerate the
spread of STDs31. Despite its simplicity, our model makes it
analytically explicit that the actors’ activity time scale plays a major
role in the understanding of processes unfolding on dynamical
networks. Let us consider the susceptible-infected-susceptible (SIS)

Figure 1 | Network visualization and degree distribution of the PRL dataset considering three different aggregated views. In particular, in the first two
rows we focus on the set of authors whowrote at least one paper in the period between 1960 and 1974. For this subset of 5, 162 active authors we construct
three different networks, graphically represented in the central row of the figure. The upper row represents a blown up perspective of a particular network
region. In the left column we show the network of 1974, defined by the active nodes in the given time frame. The central column shows the network
obtained by integrating over 10 years, from 1974 to 1984. In the right column we show the network obtained by integrating over 30 years, from 1974
to2004. The first network is highly fragmented as is obvious from the visualization. When larger windows are integrated the density of the network
increases and heterogeneous connectivity patterns start to emerge. Clearly, as indicated by the degree distributions, that consider the complete set of
authors (not just those used for the sake of visualization in the first two rows), the time scale used to construct the network affects its topological structure.
In each visualization the size and color of the nodes is proportional to their degree.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 469 | DOI: 10.1038/srep00469 3
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Complex networks: Statistical characterization

Degree correlations P(k’|k): 
(Conditional) probability that an edge that departs from a 
vertex of degree k arrives at a vertex of degree k’

Basic useful property:

Degree detailed balance condition
Mostly interested in degree uncorrelated networks with

We will not consider more complex properties such as large 
clustering, non-trivial correlations, etc.

P (k�|k) =
k�P (k�)

�k�



Quenched vs. Annealed networks

Quenched networks:
A standard real network: Edges between vertices are fixed 
and do not change in time: aij takes constant values

Annealed networks:
Time varying network: Edges are rewired in the network at a 
time scale much sorter than that of any dynamical process, 
while preserving the degree of each vertex (the degree 
distribution) and the degree correlations 

P(k) and P(k’|k), which were statistical properties of a 
quenched network, become the very definition of an 
annealed one

From a practical point of view: A neighbors of a vertex k is a 
vertex of degree k’ chosen at random with probability P(k’|k) 

Probability k’P(k’)/<k> in uncorrelated networks



The annealed network approximation

In annealed networks, the adjacency matrix is defined only in a 
statistical sense

Probability that vertices i and j are joined by an edge

Annealed network approximation

Annealed networks can be considered as:
Abstraction from a real network (rewiring)

Useful for calculations, as we will see
Representation of real time-varying networks

Social networks: We have a certain number of friends, 
but we don’t see all of them every day

Uncorrelated
networks

āij � ākk� =
1

NP (k)

1

NP (k�)

�

n�k

�

m�k�

anm � k�P (k|k�)

NP (k)
=

kk�

N�k�



Network models for numerical checks

We want to make computer simulations of our models, in order 
to check the predictions of possible theoretical solutions or to 
make direct numerical explorations
Using real networks is problematic:

They are usually too small
N ~ 104, 105

They come on fixed sizes
We cannot check the effects of changing network size

The are loaded with correlations, communities and other 
topological oddities

We have no idea (in the general case) how to treat those 
analytically

The best option is to perform numerical simulations in 
statistically controlled network models



Network models for numerical checks

Basic models for numerical simulations
Configuration model (CM)

Degrees ki are assigned to nodes, extracted from an a 
priori degree distribution P(k); edges are randomly 
created between nodes, respecting the preassigned 
degrees

Creates correlations in SF networks for γ < 3
Uncorrelated configuration model (UCM)

As the CM, but degrees are restricted by ki < N1/2

No correlations
Barábasi-Albert model (BA)

Growing network model: A new node is assigned every 
time step, with m edges that are connected to old nodes 
with probability proportional to ki + a

Degree distribution SF with γ = 3 + a/m



Motivation: 
I Epidemic spreading of 

computer viruses



Definition of computer viruses

Definition: A computer virus is a computer program that can 
copy itself and infect a computer without permission or 
knowledge of the user
Classical transmission mechanism: copying into a program

Usually viruses contain additional instructions designed to 
interrupt or damage the computer

Flash funny messages on the screen
Overwrite files
Overwrite the FAT of the hard drive
Completely erase the hard drive

RAM HD

P

V

RAM HD

P

V

RAM HD

P

V

P P

V



Types of computer viruses (strains)

File viruses: Infect programs. When the user 
executes the program, the virus is installed in the 
RAM and copies itself on any executed program

Boot viruses: Infect the boot sector of hard drives 
and floppies. On booting, the virus is installed in 
the RAM and can infect programs and new floppies

Macro viruses: Infect data files (documents), such 
as word documents, using the macro instructions 
inserted in the documents.

According to the mechanism of transmission:



E-mail viruses

Class of macro viruses that propagate through email 
You receive a mail with some attachment (the virus)

Psychology applied to make you open it: money, sex, 
girls...

The “I-love-you” bug (more on it later)
After opening the attachment, the virus reads the list of 
contacts in your email client (Outlook)
The virus sends itself to all the people in your list of contacts 
(without you realizing it)
The infection propagates again from your contacts



Why study computer viruses?

Economical
Viruses cause millions of dollars worth in damaged 
equipment and downtime

March 1999, Melissa virus forced Microsoft and other 
large companies to completely shut down email service
January 2000, Mydoom worm infected 250.000 
computers in one day
2000, I-love-you bug produced losses of $8M in a few 
days
January-October 2007, Storm worm infected 50.000.000 
computers

The antivirus industry moves billions of dollars yearly

Scientific
How similar are cybernetic and biological diseases?



Computer virus epidemiology

Based in the analogy with biological epidemiology
Two possible perspectives:

Microscopic level
Researches trying to reverse-engineer the source code of 
computer viruses to design appropriate antivirus software

ANALOGY: Quest for new medicines and vaccines
Macroscopic level

Statistical  analysis and modeling of epidemiological data 
in order to find information and policies aimed at  lowering 
epidemic outbreaks

ANALOGY: Macroscopic prophylaxis (vaccination 
strategies) for the computer community 

Statistical physics perspective enters here!!
Focus on the macroscopic level: Statistical analysis and modeling



Strain data analysis

Analysis of the statistical properties of homogeneous 
groups of viruses (strains)

[data from http://www.virusbtn.com]

Macro viruses
File Viruses
Boot viruses

Decrease of boot viruses
Steady state for file viruses
Large increase of macro
viruses, especially from 
computer worms

Nowadays: macro viruses 
overwhelmingly dominant



Epidemic prevalence

Epidemiologically relevant measures: prevalence (fraction of 
infected individuals)
In biological diseases: stages of an epidemic outbreak

More on this later on

Endemic state

Clean-up



Prevalence of individual viruses

Very few viruses are able 
to survive long enough to 
establish an endemic or 
stable state (at least at 
not very large time 
scales)

Endemic viruses possess 
very low (ρ < 10-5) but 
stable prevalence

Experimental measure of the prevalence for 
computer worms in the wild

I-love-you bug

[data from http://www.messagelabs.com]



Why is this strange?
Classical models of 
epidemiology predict that the 
prevalence depend on some 
parameter λ (spreading rate) 
measuring the power of 
infection, and shows a phase 
transition between an infected 
and a healthy phase at some 
finite epidemic threshold λc

Healthy phase

Infected
phase

A very low prevalence is only achieved very close to the epidemic 
threshold

Are computer viruses built to be fine-tuned to have a spreading 
rate very close to the epidemic threshold?



Survival probability of strains

Survival probability Ps(t): Fraction of viruses that
survive up to a time  t  after their first appearance  

Macro viruses

File Viruses

Boot viruses

average lifetime
of each strain

The average life is very large compared with the
time scale of viruses or anti-viruses

[data from http://www.virusbtn.com]

Ps(t) � e�t/�



Why this peculiar properties?

The observed behavior is not compatible with simple models of 
epidemic spreading: Why?

Computer viruses spread in a very particular environment
Computer networks (Internet)
E-mail (social) networks

These are complex networks with particular properties
They are scale-free

The scale-free nature of the environment turns out to have very 
strong effects on the dynamics of virus spreading



Motivation: 
II Large-scale pandemic 

forecasting



Epidemics now
  

  
  
  
  

  
  
  
  
  
  
  
  
  
  

  


The study of epidemic spreading 
is a classical subject, which has 
attracted in recent years media 
headlight

The 2009 new flu strain H1N1 
hit the world, leading a 
pandemics with a large 
number of infections, deaths, 
and panic

• Several large-scale simulation 
infrastructures were 
developed and used at the 
time, aimed at forecasting the 
evolution of that and new 
other pandemics



How the predicting frameworks work

Forecasting simulation frameworks 
are nontrivial systems, 
implementing:

Realistic models of disease 
propagation, based on real 
epidemiological data

Reaction-diffusion systems 
with empirically fitted 
parameters

Different layers of social, 
population and mobility data

Substrate for the RD system

Plus HUGE amounts of supercomputer CPU time ...



D

E

Using the proper substrate

Large-scale diffusion: Transportation 
networks

We move in fast and log-range 
ways

Railroad, commuting, air 
transportation network

• Small-scale diffusion: Social networks

➡ We don’t interact with people in a 2D 
world, but in a network of 
acquaintances 

This kind of networks must be 
implemented in forecasting frameworks



The importance of being a network
Strong correlation between transportation powers and epidemic 
spread

XIV century: 
Black Death pandemics in Europe 

Crossed Europe in 7 years

XX century:
1918 Spanish influenza pandemics 

Crossed the world in 6 months

XXI century:
2009 H1N1 pandemics 

Crossed the world in less than 
2 months

Particularly important: Air transportation



Pandemic predictions are possible
One of the greatest exits of these infrastructures is the ability 
to make real and practical predictions
Peak of the epidemics on November, 
instead of February (usual seasonal 
peak)

Almost no effect of preventive 
measures such as airport closing



A simple model with an exact 
solution:

The random walk



Diffusion processes: the random walk

Diffusion processes (random walks) are the simplest dynamics one can 
consider on any substrate

We can start to get a glimpse of the effects of the network 
complexity in the simplest case

Additionally, it has relevance in real problems such as searching or 
traffic in heterogeneous structure

Simplest realization: the uncorrelated random walk:
We have a particle (walker) 
on an undirected network
At time t, it is located on a given 
vertex of degree k 
At time t+1 , it hops with probability 
1/k to one of the k neighbors of the 
initial vertex

k = 4

k = 4
p = 1/4

t

t+ 1



Exact solution: Master equation approach

The random walk can be characterized by the probability 
P(i,t;j) that a walker starting at node j at time t=0 is at node i at time t
Simple master equation for this probability in terms of the adjacency 
matrix aij:

Iterating the equation up to time t 

By symmetry

Detailed balance condition

P (i, t + 1; j) =
�

n

ain

kn
P (n, t; j)

P (i, t : j) =
X

n1

X

n2

· · ·
X

nt�1

ain1

ki

an1n2

kn1

· · ·
ant�1j

knt�1

kiP (i, t; j) = kjP (j, t; i)



Exact solution: Master equation approach

In the steady state (t →∞), where information of the origin is lost

Probability that the walker is at vertex i in the steady state
For this quantity

From here, the normalized probability

The probability that the walker is at vertex i is proportional to the 
degree ki

P (i) = lim
t!1

P (i, t; j)

P (i) =
ki

hkiN

kjP (i) = kiP (j)



First passage time
First passage probability F(i,j,t): probability that a walker starting at i 
arrives at j for the first time at time t
Simple equation

In terms of the corresponding Laplace transforms

Look at the mean first passage time to go from i to j

P (j, t; i) = �t,0�i,j +
tX

t0=0

P (j, t� t0; j)F (i, j, t0)

F̂ (i, j, s) =
P̂ (j, s; i)� �i,j

P̂ (j, s; j)

T̄ (ij) =
1X

t=0

tnF (i, j, t) = �F̂ 0(i, j, s)



Mean first passage time

Expanding the Laplace transform of P(i,t;j) in powers of s, in 
introducing in the equation for F(i,j,s) we can obtain the exact 
result

The mean first return time is inversely proportional to the 
degree
The mean first passage time is inversely proportional to the 
degree of the target, times corrections (small) depending on i 
and j

T̄ (ij) =

� �k�N
ki

if i = j
�k�N

kj
� corrections if i �= j



Heterogeneous mean-field 
theory



Quantitative analysis of dynamical processes on 
complex networks

In some cases, an exact solution is possible for simple models on 
networks; becomes complex for complex processes
But usually, we must resort to approximate methods
As in the case of Euclidean lattices, the analytical study of dynamical 
processes on complex networks in based in the mean-field analysis
Theoretical framework analogous to the case of Euclidean lattices, 
based in

Homogeneous mixing hypothesis: The mixture of particles is 
homogeneous and does not depend on space (the particular 
vertex considered in the case of networks)

Fundamental difference in the case of networks:
Vertices with a different degree can have in principle different 
dynamical properties (in particular in SF networks)

The degree k must be taken explicitly into account in the 
formulation of mean-field theories
This corresponds to a heterogeneous mean-field theory



Construction of mean-field theories in complex networks

To construct  a heterogeneous MF theory in complex networks we 
will follow the general procedure:

Identify the appropriate set of dynamical variables Ψ(t), 
characterizing the dynamical system 
Distinguish the value of the variables in each vertex degree class 
k, Ψk(t) 

Write down the appropriate dynamical equation for each variable 
Ψk(t), starting from the dynamical rules defining the process:

In this last step we will be guided by standard MF approximation
In many cases, a direct translation adding degree 
dependence will be enough
In others, microscopic deductions are possible
In other, intuition



Heterogeneous mean-field assumptions

When applying mean-field techniques to complex networks, 
we will be making several assumptions:
1) Noise (fluctuations) play no role in the dynamics

Usual assumption in standard mean-field treatments
Wrong in regular lattices of small dimension
In complex networks it is supposed to work due to the 
small-world property (effective infinite dimensional 
systems)

The diameter of the network is so small that the 
size of fluctuations cannot be very large, and we 
can assume than competing fluctuations can cancel 
each other in very few time steps of the order log N
This is in contrast with non-small world networks, 
such as Euclidean lattices, in which the time to 
cancel fluctuations scales as N1/d



Heterogeneous mean-field assumptions

2) Lack of dynamical correlations
We will assume that properties that depend on the state 
of two vertices can be decomposed in products 
depending on the state of each individual vertex

Example: A system in with nodes can be in state si

Sometimes it works, sometimes it does not

Prob(si = �, sj = �) � Prob(si = �) � Prob(sj = �)



Heterogeneous mean-field assumptions

3) The degree is the only property characterizing the behavior 
of vertices

All the vertices with the same degree have the same 
properties, and can therefore we grouped together

Degree coarse-graining
We will only have to consider equations depending on 
the degree k, and not on the individual vertices

This approximation is equivalent to replacing the 
adjacency matrix by an average at fixed degree

The annealed network approximation

HMF is exact on annealed networks!!



The random walk revisited



Let us consider again the random walk problem, from the 
perspective of HMF theory

See if we can recover the previous exact results

Characterization of diffusion given by ρi(t): Probability that the 
walker is in vertex i at time t

Equivalent to the probability P(i, t; j); we disregard 
effectively the starting point t

Within a heterogeneous MF approach, we assume that this 
quantity depends exclusively on the degree k, ρk(t): Probability 
that the walker is at a given vertex of degree k at time t

Occupation probability

HMF theory of the random walk



The occupation probability fulfills the rate equation

In the steady state ∂t ρk(t) = 0, the solution of this equation is

For any correlation pattern P(k’|k)
Universality in the solution

Occupation probability rate equation

To check our results against looped structures, we have
considered the uncorrelated configuration model !UCM"
#22$, yielding uncorrelated networks with any prescribed SF
degree distribution. The model is defined as follows. !1" As-
sign to each vertex i in a set of N initially disconnected
vertices a degree ki, extracted from the probability distribu-
tion P!k"%k−!, and subject to the constraints m"ki"N1/2

and &iki even. !2" Construct the network by randomly con-
necting the vertices with &iki /2 edges, respecting the preas-
signed degrees and avoiding multiple and self-connections.
Using this algorithm, it is possible to create SF networks
which are completely uncorrelated. Additionally, by selecting
the minimum degree m#2, we generate connected networks
with probability almost 1. The effect of correlations in
looped structures can be checked by means of the configu-
ration model !CM" #9$, which is analogous to the UCM, but
allows degrees to range in the interval m"ki"N #23$. In all
present simulations, we set m=4 for looped neworks, tree
networks corresponding to m=1 !z=4 for the RC tree".

III. RANDOM WALK EXPLORATION

We start by studying two properties of a random walk that
quantify the speed at which it explores its neighborhood in
the network. The first one is the coverage S!t", defined as the
number of different vertices visited by a walker at time t,
averaged for different random walks starting from different
sources. For looped networks, the coverage reaches after a
short transient the functional form #24,25$ SL!t"% t,1 in ac-
cordance with theoretical calculations for the Bethe lattice
#26$, and eventually saturates to SL!$"=N, due to finite-size
effects. A scaling form for the coverage has been proposed
#24$ to be SL!t"=Nf!t /N", with f!x"%x for x%1 and f!x"
%1 for x&1.

The origin of the scaling of the coverage with system size
can be understood by means of a simple dynamic mean-field
argument. Let us define 'k!t" as the probability that a vertex
of degree k hosts the random walker at time t. During the
evolution of the random walk, this probability satisfies, in a
general network with a correlation pattern given by the con-
ditional probability P!'k!'k" that a vertex of degree k is con-
nected to another vertex of degree k! #16$, the mean-field
equation

!'k!t"
!t

= − 'k!t" + k&
k!

P!'k!'k"
k!

'k!!t" . !1"

In the steady state, !t'k!t"=0, the solution of this equation,
for any correlation pattern, is given by the normalized distri-
bution #18,27$

'k!t" =
k

(k)N
. !2"

Let us now define the coverage spectrum sk!t" as fraction of
vertices of degree k visited by the random walker at least

once. Obviously, we have that S!t"=N&kP!k"sk!t". The spec-
trum sk!t" increases in time as the random walk arrives to
vertices that have never been visited. Therefore, at a mean-
field level, it satisfies the rate equation

!sk!t"
!t

= k#1 − sk!t"$&
k!

P!'k!'k"
k!

'k!!t" . !3"

Approximating 'k!!t" by its steady-state value !for not too
small times", we obtain

!sk!t"
!t

= #1 − sk!t"$
k

(k)N
, !4"

whose solution with the initial condition sk!0"=0 is

sk!t" = 1 − exp*−
kt

(k)N+ . !5"

We therefore are led to the general scaling expression

S!t"
N

= 1 − &
k

P!k"exp*−
kt

(k)N+ . !6"

In the limit of kt / (k)N%1, we recover the exact result S!t"
% t #26$. For SF networks, we obtain within the continuous
degree approximation

S!t"
N

= 1 − !! − 1"m!−1,
m

$

k−! exp*−
kt

(k)N+dk = 1 − !!

− 1"E!* mt

(k)N+ , !7"

where E!!z" is the exponential integral function #28$. For EM
networks, on the other hand, we find

S!t"
N

= 1 −
e

m
,

m

$

e−k/m exp*−
kt

(k)N+dk = 1 −
e−mt/(k)N

1 + mt/(k)N
.

!8"

In Fig. 1, we can observe that the scaling predicted by Eq.
!5" for the coverage spectrum sk!t" is very well satisfied in
looped complex networks, independently of their homoge-
neous or SF nature, and, in this last case, of the degree ex-
ponent and the presence or absence of correlations. In Fig. 2,
on the other hand, we plot the total coverage SL!t" /N, which
can be fitted quite correctly by the analytical expressions
Eqs. !7" and !8" for SF and EM networks.

On tree networks we find a different scenario. In Fig. 3 we
can see that the coverage spectrum does not scale as pre-
dicted by our mean-field argument. While we do not have
theoretical predictions for the correct scaling form, a numeri-
cal analysis of the total coverage, Fig. 4, shows that, at short
times, it grows in trees as ST!t"% t / ln!t", preserving an ap-
proximate scaling form

ST!t" = Nf* t

ln!t"N+ , !9"

with a scaling function f!x" that depends slightly on the net-
work details !degree exponent, correlations, etc.". This obser-

1In the following, the subscripts L and T will indicate looped and
tree networks, respectively.
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Other properties accessible via HMF: 
Random Walk Coverage

A quantity of immediate interest, related to the speed at which 
the walker explores the network, is the coverage S(t)

Number of different vertices visited by a walker at time t, 
averaged for different random walks starting from different 
starting points

At MF level, we define first sk(t) 

Fraction of vertices of degree k visited by the random walker 
at least once
Obviously



Other properties accessible via HMF: 
Random Walk Coverage

At MF level, we have the rate equation

Substituting the steady state approximation

Solution for the initial condition sk(0)=0



Other properties accessible via HMF: 
Mean-first passage time

More information about the dynamics of random walks can be 
extracted from the analysis of the mean first passage time 
(MFPT) τ→(i), defined as the average time that a random walker 

takes to arrive for the first time at vertex i, starting from a 
random origin
At a very MF level

The probability for the walker to arrive at a vertex i, in a 
hop following a randomly chosen edge, is given by q(i) = 
ki / N <k>. 
Therefore, the probability of arriving at vertex i for the first 
time after t hops is Pa(i ; t)=[1-q(i)]t-1 q(i)

The MFTP to vertex i can thus be estimated as the average



Numerical checks: Coverage

MF solution takes the scaling form

Where the scaling function f(x) depends on degree 
distribution

Numerically, works 
perfectly for all kinds

of networks 



Mean-first passage time

Numerical simulations provide a perfect fit with MF 
prediction



A caveat: Does HMF always work?

Consider for example a particular 
type:

Tree networks:
 Networks such that cutting a 
single edge divides the 
network in two disconnected 
components

What about diffusion in this 
particular kind of topology?

Mean-field seems to work perfectly for the networks 
considered

One main reason is the lack of dynamical correlations (linear 
equation)

But does it always work for all kinds of networks?



Coverage in trees

Numerical simulations show 
that the predicted scaling in 
HMF is not fulfilled, observing 
instead a form that can be 
numerically fitted to

No explanation...



Mean first passage time in trees

Again MF does not work in trees, with complex expressions 
for the MFPT, according to the topological properties of the 
networks



Why trees are different?
We can get an idea of why trees are different looking at the shortest 
path distribution in two networks with the same size

Average shortest path length is a 
well defined quantity in looped 
networks

Very narrow distribution
“Strong” small-world

In trees, however, there are large 
variations in shortest path, beyond 
average value

“Weak” small-world
Distance can influence the 
behavior of discovery times or 
MFTP’s, yielding larger values

Looped network

Tree network



The random walk revisited
I Extension of the random walk



Generalizations of the random walk

HMF allows to consider in a simple way generalizations of the 
random walk which are not easily accessible through exact 
solutions
Simplest generalization: random walk with heterogeneous 
transition rates

At time t, the walker is at vertex i
It chooses at random a neighbor j
With a given probability r(i→j), the transition rate, the 
walker hops from i to j
Time is updated t→t+1

At a degree coarse-grained level, the probability r(i→j) defines 
a transition rate
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be written as

Wkk′ = P (k′|k)r(k → k′). (5)

The function P (k′|k), defined as the conditional probability for a vertex of degree k to be
connected with another vertex of degree k′ [43], takes into account the topological features
of the network, through gauging the probability of selecting a vertex k′ as neighbor of k.
The function r(k → k′) measures the rate of jumping from a vertex of degree k to a vertex
of degree k′ (given that they are connected by an edge), and depends on k and k′ through
the rates ri→j and the functions h and σ. Obviously, the rate r(k → k′) is not in general
a symmetric function of k and k′. It is worth noting that, apart from a normalization,
equation (5) is simply the so-called weighted propagator describing the probability that a
node in class k interacts with a node in class k′ [37]. We also note that the rates r(k → k′)
depend on the inverse temperature β through the microscopic rates ri→j.

4. The general HMF formalism

In this section, we apply the HMF theory to compute different quantities relevant for
the characterization of the dynamics of a random walk in a complex energy landscape
represented in terms of a network of minima.

4.1. Occupation probability

The description of a random walk dynamics starts from the occupation probability
P (k, tw), defined as the probability for the walker to be in any node of degree k at a
time tw. Its time evolution can be easily represented in terms of a master equation of the
form

∂P (k, tw)

∂tw
≡ Ṗ (k, tw) = −

∑

k′

Wkk′P (k, tw) +
∑

k′

Wk′kP (k′, tw). (6)

Upon describing the state at time tw with the row vector P(tw) = {P (1, tw), P (2, tw), . . . ,
P (kc, tw)}, where kc is the cut-off or largest degree in the network, equation (6) can be
rewritten in vector form as

Ṗ(tw) = −P(tw)L, (7)

where the matrix L, with elements

Lk′k =

(
δk′k

∑

l

Wkl − Wk′k

)
, (8)

is a generalization of a Laplacian matrix to the case of directed weighted graphs. The
matrix elements satisfy

Lk′k′ =
∑

k,k #=k′

Lk′k, (9)

which ensures conservation of probability and states that the columns of L are not linearly
independent. The real part of every eigenvalue of L is non-negative [44]. As a consequence,

doi:10.1088/1742-5468/2011/03/P03032 7



Generalizations of the random walk

Time evolution of the probability P(k,t) of finding the walker at 
any node of degree k: Simple master equation

In the steady state, P∞(k) = P(k,t→∞)

Can be solved imposing a detailed balance condition

dP (k, t)

dt
= �

�

k�

Wkk�P (k, t) +
�

k�

Wk�kP (k�, t)
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all solutions of equation (7), which can be formally written as

P(tw) = P(t0)e
−L(tw−t0), (10)

are stable according to Lyapunov criteria. In particular, since det L = 0, L always has the
eigenvalue 0, which corresponds to a constant solution of the problem. At this point one
can proceed in close analogy with discrete time regular Markov chains [45]. By making
the assumption that the matrix Wk′k is non-negative and irreducible (it indeed is for every
choice of r(k′ → k) in the following), we can prove that the 0 eigenvalue of L has algebraic
multiplicity 1. Hence, the stationary solution of equation (7) is unique.

4.1.1. The steady state. In order to calculate the steady solution P∞ in the limit tw → ∞,
one can impose Ṗ(tw) = 0. This leads to the condition

P∞L = 0, (11)

so we are left with the task of finding the left nullspace of L. Equation (11) is a
homogeneous system of algebraic linear equations. It admits non-trivial solutions since
det(L) = 0. In our case, the solution to (11) can be easily found by imposing the detailed
balance condition. Namely, writing equation (11) as

∑

k′

[−Wkk′P∞(k) + Wk′kP
∞(k′)] = 0, (12)

we can obtain a solution by imposing that the terms inside the summation in equation (12)
cancel individually, that is

Wkk′P∞(k) = Wk′kP
∞(k′), ∀k, k′. (13)

Substituting in the form of Wkk′, we obtain
P∞(k)

P∞(k′)
=

Wk′k

Wkk′
=

P (k|k′)r(k′ → k)

P (k′|k)r(k → k′)
=

kP (k)

k′P (k′)

r(k′ → k)

r(k → k′)
, (14)

where in the last step we have used the degree detailed balance condition kP (k)P (k′|k) =
k′P (k′)P (k|k′) which simply expresses that the number of edges from a node of degree k
to a node of degree k′ is equal to the number of edges from a node of degree k′ to a node
of degree k [46]. From equation (14), we see that its right-hand side must be expressible
as a simple ratio of a function of k over a function of k′. A general way to obtain this is
to impose a coarse-grained rate r(k′ → k) taking the general form

r(k′ → k) = f(k′)g(k)s(k′, k). (15)

In other words, we assume that the rate r(k′ → k) can be written as the product of a
function of k′, a function of k, and a symmetric function s(k′, k) = s(k, k′) (where k and
k′ need not be separable). We will see later that all the rates ri→j defined in section 2.1
(traps, Glauber, Metropolis, and energy barriers) can be written in such a form. The
stationary solution is then given by

P∞(k) =
1

Z kP (k)g(k)/f(k) (16)

where Z is a normalizing constant determined by the condition
∑

k P∞(k) = 1. Such a
solution is unique, as proven above. Interestingly, the symmetric function s(k′, k) does not
enter the steady solution, although it will play a role in affecting the transient behavior,
as we will see in the following sections.
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all solutions of equation (7), which can be formally written as

P(tw) = P(t0)e
−L(tw−t0), (10)

are stable according to Lyapunov criteria. In particular, since det L = 0, L always has the
eigenvalue 0, which corresponds to a constant solution of the problem. At this point one
can proceed in close analogy with discrete time regular Markov chains [45]. By making
the assumption that the matrix Wk′k is non-negative and irreducible (it indeed is for every
choice of r(k′ → k) in the following), we can prove that the 0 eigenvalue of L has algebraic
multiplicity 1. Hence, the stationary solution of equation (7) is unique.

4.1.1. The steady state. In order to calculate the steady solution P∞ in the limit tw → ∞,
one can impose Ṗ(tw) = 0. This leads to the condition

P∞L = 0, (11)

so we are left with the task of finding the left nullspace of L. Equation (11) is a
homogeneous system of algebraic linear equations. It admits non-trivial solutions since
det(L) = 0. In our case, the solution to (11) can be easily found by imposing the detailed
balance condition. Namely, writing equation (11) as

∑

k′

[−Wkk′P∞(k) + Wk′kP
∞(k′)] = 0, (12)

we can obtain a solution by imposing that the terms inside the summation in equation (12)
cancel individually, that is

Wkk′P∞(k) = Wk′kP
∞(k′), ∀k, k′. (13)

Substituting in the form of Wkk′, we obtain
P∞(k)

P∞(k′)
=

Wk′k

Wkk′
=

P (k|k′)r(k′ → k)

P (k′|k)r(k → k′)
=

kP (k)

k′P (k′)

r(k′ → k)

r(k → k′)
, (14)

where in the last step we have used the degree detailed balance condition kP (k)P (k′|k) =
k′P (k′)P (k|k′) which simply expresses that the number of edges from a node of degree k
to a node of degree k′ is equal to the number of edges from a node of degree k′ to a node
of degree k [46]. From equation (14), we see that its right-hand side must be expressible
as a simple ratio of a function of k over a function of k′. A general way to obtain this is
to impose a coarse-grained rate r(k′ → k) taking the general form

r(k′ → k) = f(k′)g(k)s(k′, k). (15)

In other words, we assume that the rate r(k′ → k) can be written as the product of a
function of k′, a function of k, and a symmetric function s(k′, k) = s(k, k′) (where k and
k′ need not be separable). We will see later that all the rates ri→j defined in section 2.1
(traps, Glauber, Metropolis, and energy barriers) can be written in such a form. The
stationary solution is then given by

P∞(k) =
1

Z kP (k)g(k)/f(k) (16)

where Z is a normalizing constant determined by the condition
∑

k P∞(k) = 1. Such a
solution is unique, as proven above. Interestingly, the symmetric function s(k′, k) does not
enter the steady solution, although it will play a role in affecting the transient behavior,
as we will see in the following sections.
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Generalizations of the random walk

With the form of Wk k’:

Interestingly independent of degree correlations

Explicit solutions for particular forms of r(k→k’):

In this case
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all solutions of equation (7), which can be formally written as

P(tw) = P(t0)e
−L(tw−t0), (10)

are stable according to Lyapunov criteria. In particular, since det L = 0, L always has the
eigenvalue 0, which corresponds to a constant solution of the problem. At this point one
can proceed in close analogy with discrete time regular Markov chains [45]. By making
the assumption that the matrix Wk′k is non-negative and irreducible (it indeed is for every
choice of r(k′ → k) in the following), we can prove that the 0 eigenvalue of L has algebraic
multiplicity 1. Hence, the stationary solution of equation (7) is unique.

4.1.1. The steady state. In order to calculate the steady solution P∞ in the limit tw → ∞,
one can impose Ṗ(tw) = 0. This leads to the condition

P∞L = 0, (11)

so we are left with the task of finding the left nullspace of L. Equation (11) is a
homogeneous system of algebraic linear equations. It admits non-trivial solutions since
det(L) = 0. In our case, the solution to (11) can be easily found by imposing the detailed
balance condition. Namely, writing equation (11) as

∑

k′

[−Wkk′P∞(k) + Wk′kP
∞(k′)] = 0, (12)

we can obtain a solution by imposing that the terms inside the summation in equation (12)
cancel individually, that is

Wkk′P∞(k) = Wk′kP
∞(k′), ∀k, k′. (13)

Substituting in the form of Wkk′, we obtain
P∞(k)

P∞(k′)
=

Wk′k

Wkk′
=

P (k|k′)r(k′ → k)

P (k′|k)r(k → k′)
=

kP (k)

k′P (k′)

r(k′ → k)

r(k → k′)
, (14)

where in the last step we have used the degree detailed balance condition kP (k)P (k′|k) =
k′P (k′)P (k|k′) which simply expresses that the number of edges from a node of degree k
to a node of degree k′ is equal to the number of edges from a node of degree k′ to a node
of degree k [46]. From equation (14), we see that its right-hand side must be expressible
as a simple ratio of a function of k over a function of k′. A general way to obtain this is
to impose a coarse-grained rate r(k′ → k) taking the general form

r(k′ → k) = f(k′)g(k)s(k′, k). (15)

In other words, we assume that the rate r(k′ → k) can be written as the product of a
function of k′, a function of k, and a symmetric function s(k′, k) = s(k, k′) (where k and
k′ need not be separable). We will see later that all the rates ri→j defined in section 2.1
(traps, Glauber, Metropolis, and energy barriers) can be written in such a form. The
stationary solution is then given by

P∞(k) =
1

Z kP (k)g(k)/f(k) (16)

where Z is a normalizing constant determined by the condition
∑

k P∞(k) = 1. Such a
solution is unique, as proven above. Interestingly, the symmetric function s(k′, k) does not
enter the steady solution, although it will play a role in affecting the transient behavior,
as we will see in the following sections.
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all solutions of equation (7), which can be formally written as

P(tw) = P(t0)e
−L(tw−t0), (10)

are stable according to Lyapunov criteria. In particular, since det L = 0, L always has the
eigenvalue 0, which corresponds to a constant solution of the problem. At this point one
can proceed in close analogy with discrete time regular Markov chains [45]. By making
the assumption that the matrix Wk′k is non-negative and irreducible (it indeed is for every
choice of r(k′ → k) in the following), we can prove that the 0 eigenvalue of L has algebraic
multiplicity 1. Hence, the stationary solution of equation (7) is unique.

4.1.1. The steady state. In order to calculate the steady solution P∞ in the limit tw → ∞,
one can impose Ṗ(tw) = 0. This leads to the condition

P∞L = 0, (11)

so we are left with the task of finding the left nullspace of L. Equation (11) is a
homogeneous system of algebraic linear equations. It admits non-trivial solutions since
det(L) = 0. In our case, the solution to (11) can be easily found by imposing the detailed
balance condition. Namely, writing equation (11) as

∑

k′

[−Wkk′P∞(k) + Wk′kP
∞(k′)] = 0, (12)

we can obtain a solution by imposing that the terms inside the summation in equation (12)
cancel individually, that is

Wkk′P∞(k) = Wk′kP
∞(k′), ∀k, k′. (13)

Substituting in the form of Wkk′, we obtain
P∞(k)

P∞(k′)
=

Wk′k

Wkk′
=

P (k|k′)r(k′ → k)

P (k′|k)r(k → k′)
=

kP (k)

k′P (k′)

r(k′ → k)

r(k → k′)
, (14)

where in the last step we have used the degree detailed balance condition kP (k)P (k′|k) =
k′P (k′)P (k|k′) which simply expresses that the number of edges from a node of degree k
to a node of degree k′ is equal to the number of edges from a node of degree k′ to a node
of degree k [46]. From equation (14), we see that its right-hand side must be expressible
as a simple ratio of a function of k over a function of k′. A general way to obtain this is
to impose a coarse-grained rate r(k′ → k) taking the general form

r(k′ → k) = f(k′)g(k)s(k′, k). (15)

In other words, we assume that the rate r(k′ → k) can be written as the product of a
function of k′, a function of k, and a symmetric function s(k′, k) = s(k, k′) (where k and
k′ need not be separable). We will see later that all the rates ri→j defined in section 2.1
(traps, Glauber, Metropolis, and energy barriers) can be written in such a form. The
stationary solution is then given by

P∞(k) =
1

Z kP (k)g(k)/f(k) (16)

where Z is a normalizing constant determined by the condition
∑

k P∞(k) = 1. Such a
solution is unique, as proven above. Interestingly, the symmetric function s(k′, k) does not
enter the steady solution, although it will play a role in affecting the transient behavior,
as we will see in the following sections.
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all solutions of equation (7), which can be formally written as

P(tw) = P(t0)e
−L(tw−t0), (10)

are stable according to Lyapunov criteria. In particular, since det L = 0, L always has the
eigenvalue 0, which corresponds to a constant solution of the problem. At this point one
can proceed in close analogy with discrete time regular Markov chains [45]. By making
the assumption that the matrix Wk′k is non-negative and irreducible (it indeed is for every
choice of r(k′ → k) in the following), we can prove that the 0 eigenvalue of L has algebraic
multiplicity 1. Hence, the stationary solution of equation (7) is unique.

4.1.1. The steady state. In order to calculate the steady solution P∞ in the limit tw → ∞,
one can impose Ṗ(tw) = 0. This leads to the condition

P∞L = 0, (11)

so we are left with the task of finding the left nullspace of L. Equation (11) is a
homogeneous system of algebraic linear equations. It admits non-trivial solutions since
det(L) = 0. In our case, the solution to (11) can be easily found by imposing the detailed
balance condition. Namely, writing equation (11) as

∑

k′

[−Wkk′P∞(k) + Wk′kP
∞(k′)] = 0, (12)

we can obtain a solution by imposing that the terms inside the summation in equation (12)
cancel individually, that is

Wkk′P∞(k) = Wk′kP
∞(k′), ∀k, k′. (13)

Substituting in the form of Wkk′, we obtain
P∞(k)

P∞(k′)
=

Wk′k

Wkk′
=

P (k|k′)r(k′ → k)

P (k′|k)r(k → k′)
=

kP (k)

k′P (k′)

r(k′ → k)

r(k → k′)
, (14)

where in the last step we have used the degree detailed balance condition kP (k)P (k′|k) =
k′P (k′)P (k|k′) which simply expresses that the number of edges from a node of degree k
to a node of degree k′ is equal to the number of edges from a node of degree k′ to a node
of degree k [46]. From equation (14), we see that its right-hand side must be expressible
as a simple ratio of a function of k over a function of k′. A general way to obtain this is
to impose a coarse-grained rate r(k′ → k) taking the general form

r(k′ → k) = f(k′)g(k)s(k′, k). (15)

In other words, we assume that the rate r(k′ → k) can be written as the product of a
function of k′, a function of k, and a symmetric function s(k′, k) = s(k, k′) (where k and
k′ need not be separable). We will see later that all the rates ri→j defined in section 2.1
(traps, Glauber, Metropolis, and energy barriers) can be written in such a form. The
stationary solution is then given by

P∞(k) =
1

Z kP (k)g(k)/f(k) (16)

where Z is a normalizing constant determined by the condition
∑

k P∞(k) = 1. Such a
solution is unique, as proven above. Interestingly, the symmetric function s(k′, k) does not
enter the steady solution, although it will play a role in affecting the transient behavior,
as we will see in the following sections.
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Glassy behavior
This kind of models represent simple examples of dynamical systems 
with glassy behavior: Very slow relaxation time towards equilibrium
Example: r(k→k’) = r0 exp(-β h(k))

Arrhenius rate with energy a function of degree [β = 1/T]
Choosing h(k) = E0 log (k) and a SF network

ζ(z) Riemann zeta function
ζ(z) only converges for 

Glass transition at a critical 
temperature 

Below Tc, there is no steady state in the thermodynamic limit; it is 
reached very slowly in finite networks, at time scales 
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Figure 2. Equilibrium probability distribution P∞(k) for the random walker
being in any node of degree k. For γ−βE0 = 2 the system undergoes a transition
to a glassy state.

For a power-law degree distribution P (k) ∼ k−γ, a finite glass transition temperature is
then obtained if and only if h is of the form

h(k) = E0 log(k), (38)

which is precisely what has been found, in conjunction with a scale-free degree distribution,
in [25]. Z is then indeed given by a sum of terms of the form k1−γ+βE0 , which converges
if and only if

βE0 − γ < −2. (39)

In other words, a transition between a high temperature phase in which P∞(k) exists and
a low temperature glassy phase is obtained at the critical temperature [34]

Tc =
1

βc
=

E0

γ − 2
. (40)

Quite noticeably, the existence of a transition at a finite temperature, like the value
of this temperature, does not depend on the form of the transition rates between the local
minima, but only on the existence of a particular interplay between the topology of the
network of minima and the relationship between energy and degree in this network, as
determined by the function h. We emphasize that this result is also independent of the
network degree correlations P (k′|k), as already noted in section 4.

5.2. The steady state and finite size effects

Let us focus on the case of a scale-free network of minima, with P (k) ∝ k−γ and
Ei = E0 log(ki). For any of the rates discussed above, the steady state measure, when it
exists, is given by

P∞(k) =
k1−γ+βE0

ζ(−1 + γ − βE0)
for γ − βE0 > 2, (41)

where ζ is the Riemann ζ function. A plot of P∞(k) as a function of k and γ − βE0 is
given in figure 2, while data from simulations are reported in figure 3 for the evolution of
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Figure 4. Data collapse for the time evolution of the occupation probability
P (k; tw) at different temperatures (Glauber dynamics). Data refer to UCM
networks with N = 106 and γ = 2.5, so βc = γ − 2 = 0.5 (where we have
taken E0 = 1). The top panel presents data for β < βc while both the middle
and bottom panels concern the low temperature case β > βc. Accordingly, for
the top panel we use kw ∼ t1/β

w ∼ t4w for the rescaling, while for the central
and the bottom ones it holds that kw ∼ t1/βc

w = t2w (see equation (49)). The
curves corresponding to different tw collapse well under this rescaling. Note
that we use rather small values of tw, because the equilibration time, defined by
kw ∼ kc ∼ N1/2, is teq ∼ Nβc/2 # 32 for β > βc and teq ∼ Nβ/2 # 6 for β < βc.
Each curve is obtained by averaging over 3 × 106 simulation runs.

equilibration time teq, obtained by inverting equation (49), above which the system has
completely relaxed and equation (45) is no longer valid. Finally, it is worth stressing
that, while for large temperatures the scaling exponent relating kw and tw depends
on the temperature, in the low temperature phase it becomes independent, being just
proportional to the transition temperature. We note that this saturation of the exponent
at 1/(βcE0) is very different from the phenomenology obtained in the trap model [34],

for which kw ∼ t1/(βE0)
w . An immediate consequence is that the equilibration time

strongly depends on β, as teq ∼ k(βE0)
c , for a system described by traps, but is given

by teq ∼ k(βcE0)
c % k(βE0)

c for any β > βc for Glauber and Metropolis rates.
Contrarily to the case of the glass transition temperature Tc and the steady state,

the glassy dynamics for barrier-mediated rates does not yield the same results as for
Glauber and Metropolis rates, since rk does depend on the symmetric function σ(k, k′).
In particular, we need here to choose a functional form for σ. We propose to use

σ(k, k′) = σ0(k
µ + k′µ), (51)

which will be justified in section 6. In this case we obtain

rbarriers
k ∝ r0k

−βE0e−βσ0kµ
. (52)
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Epidemic processes:
I The SIS model



SIS model

The Susceptible-Infected-Susceptible (SIS) model is the 
simplest epidemiological model, capable to sustain a stationary 
or endemic state

Such as influenza, gonorrhea, computer viruses, etc.

Definition
Individuals are either is a susceptible (S) state or in an 
infected (I) state
Susceptible individuals become infected (S → I) with 
probability ν if they are connected to other infected 
individuals
Infected individuals spontaneously recover (I → S)  with 
probability δ 

Characteristic parameter: spreading rate



Numerical implementation on the SIS model on networks

Numerical algorithm on any network defined as follows:

At each time step, we compute the number of infected 
nodes, Ni, and links emanating from them, Nn

With probability Ni/(Ni + λNn) a randomly chosen infected 
vertex becomes susceptible
With complementary probability λNn/(Ni + λNn), one of the 
edges is selected and the infection is transmitted through it
Numbers of infected vertices and related edges are updated 
accordingly
Time is increase by t → t + 1/(Ni + λNn)
Iterate this process



Mean field theory

The relevant parameter is the  density of infected individuals of 
degree k, ρk(t), which fulfills the rate equation

In the creation, the correct term should have been

Probability that a susceptible site is connected to an infected 
and gets the disease from it

Destruction 
term

Creation 
term

@t⇢k(t) = �⇢k(t) + �[1� ⇢k(t)]k
X

k0

P (k0|k)⇢k0(t)



Mean field theory

We are thus in the situation of having an edge with and S and 
an I at its extremes

Assuming lack of dynamical correlations

Decomposed in the properties of independent vertices

P {(S, k) , (I, k0)}

P {(S, k) , (I, k0)} ⌘ (1� ⇢k) P (k0|k) ⇢k0



Mean field theory

Complete equation is quite hard to solve, for general P(k’ | k)
The most we can do is to perform a stability analysis, to check 
for the possible presence of non-zero solutions corresponding to 
an steady state: Linear stability

@t⇢k = �⇢k + �(1� ⇢k)k
X

k0

P (k0|k)⇢k0

' �⇢k + �k
X

k0

P (k0|k)⇢k0

⌘
X

k0

Jk,k0⇢k0

Jk,k0 ⌘ ��k,k0 + �kP (k0|k) Jacobian matrix



Mean field theory

Steady states can happen when the largest eigenvalue of Jk k’ is 
larger than zero
I.e. when

where Λm is the largest eigenvalue of the connectivity matrix

�  �c =
1

⇤m

Ckk0 = kP (k0|k)



Uncorrelated networks

In uncorrelated networks, we have P(k’ | k) = k’ P(k’)/<k>

Therefore we have

We can check that the only eigenvector of this matrix is vk = k, 
with an eigenvalue

Thus

Ck,k0 = kk0
P (k0)

hki

⇤m =
hk2i
hki

�c =
hki
hk2i



Uncorrelated networks
The MF equation simplifies to 

Independent of k

Steady states can be determined by finding the stationary 
solution and looking for nonzero solutions of the equation



Mean field predictions in SF networks

Steady state solution

Self-consistent equation to solve  

Solution with non-zero Θ exist only for:



Mean field predictions in SF networks

There is a phase transition between an active (infected) phase 
for λ > λc and an inactive (healthy) phase for λ < λc 

Absorbing-state phase transition with an epidemic threshold

For SF networks

If 

Null epidemic threshold!! : Whatever the virulence λ of 
the epidemics, it can spread across the whole system



Mean field predictions in SF networks

Quantitative prediction for the prevalence (total density of 
infected individuals in the steady state) 
in SF networks

In the continuous degree approximation (changing sums by 
integrals) we have to solve the coupled equations

�(�) =
(� � 1)m��1

�k�

� �

m

k��+2��(�)

1 + k��(�)

�(�) = (� � 1)m��1

� �

m

k��+1��(�)

1 + k��(�)



Case γ=3

At lowest order



Numerical results

Numerical simulations confirm mean field predictions
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FIG. 2. Persistence r as a function of 1!l for different net-
work sizes: N ! 105 (1), N ! 5 3 105 (!), N ! 106 (3),
N ! 5 3 106 ("), and N ! 8.5 3 106 (#). The linear behav-
ior on the semilogarithmic scale proves the stretched exponen-
tial behavior predicted for r. The full line is a fit to the form
r " exp#2C!l$.

can pervade the system with a finite prevalence, in suffi-
ciently large networks. In all networks with bounded con-
nectivity the steady state prevalence is always null below
the epidemic threshold; i.e., all infections die out. Fur-
ther evidence to our results is given by the total absence of
scaling of r with the number of nodes that is, on the con-
trary, typical of epidemic transitions in the proximity of a
finite threshold [8]. This allows us to exclude the presence
of any spurious results due to network finite size effects.
The present result can be intuitively understood by notic-
ing that for usual lattices, the higher the node’s connectiv-
ity, the smaller the epidemic threshold. In a SF network
the unbounded fluctuations in connectivity (%k2& ! `) play
the role of an infinite connectivity, annulling thus the
threshold.

Finally, we analyze the spreading of infections starting
from a localized virus source. We observe that the spread-
ing growth in time has an algebraic form that is in
agreement with real data that never found an exponential
increase of a virus in the wild. Noteworthy, by applying
the definition of surviving probability Ps#t$ used to
analyze real data, we recover in our model the same expo-
nential behavior in time (see Fig. 3a). The characteristic
lifetime depends on the spreading rate and the network
sizes, allowing us to relate the average lifetime of a viral
strain with an effective spreading rate and the Internet
size [20]. At the same time, the divergence of lifetimes
for larger networks points out that viruses live longer if
the Internet expands.

We can also approach the system analytically by writing
the single-site equation governing the time evolution of
r#t$. In order to take into account connectivity fluctua-
tions, we consider the relative density rk#t$ of infected
nodes with given connectivity k; i.e., the probability that
a node with k links is infected. The dynamical mean-field
(MF) reaction rate equations can be written as [8,21]

0 20 40 60 80 100
t

10−3

10−2

10−1

100

P s(t
)

0.00 0.03 0.06 0.09
1/k0

20

40

60

1/
ρ k (

x 
10

3 )a) b)

FIG. 3. (a) Surviving probability Ps#t$ for a spreading rate
l ! 0.065 in scale-free networks of size N ! 5 3 105 (!),
N ! 2.5 3 104 (#), N ! 1.25 3 104 ($), and N ! 6.25 3
103 ("). The exponential behavior, following a sharp initial
drop, is compatible with the data analysis of Fig. 1. (b) Relative
density rk versus k21 in a SF network of size N ! 5 3 105 and
spreading rate l ! 0.1. The plot recovers the form predicted in
Eq. (2).

≠trk#t$ ! 2rk#t$ 1 lk'1 2 rk#t$(Q#l$ . (1)

The creation term considers the probability that a node with
k links is healthy [1 2 rk#t$] and gets the infection via
a connected node. The probability of this event is pro-
portional to the infection rate, the number of connections,
and the probability Q#l$ that any given link points to an
infected node. The MF character of this equation stems
from the fact that we have neglected the density correla-
tions among the different nodes. However, we have relaxed
the homogeneity assumption on the node’s connectivity
usually implemented in regular networks. By imposing
stationarity [≠trk#t$ ! 0] we find the stationary densities

rk !
klQ#l$

1 1 klQ#l$
, (2)

denoting that the higher the node connectivity, the higher
the probability to be infected. This inhomogeneity must
be taken into account in the self-consistent calculation of
Q#l$. Indeed, the probability that a link points to a node
with s links is proportional to sP#s$. In other words, a
randomly chosen link is more likely to be connected to a
node with high connectivity, yielding

Q#l$ !
X

k

kP#k$rkP
s sP#s$

. (3)

Since rk is on its turn function of Q#l$, we obtain a
consistency equation that allows us to find Q#l$ and rk .
Finally we can calculate the order parameter by evaluat-
ing the relation r !

P
k P#k$rk that expresses the aver-

age density of infected nodes in the system. In the SF
model considered here, we have a connectivity distribution
P#k$ ! 2m2!k23, where k is approximated as a continu-
ous variable [6]. In this case, integration of Eq. (3) allows

3202



General γ

F[a,b,c,z] = Gauss hypergeometric function



General γ

Close to ρ≈ 0, Θ≈ 0

Thus

Solution for Θ depends on γ



General γ

Prevalence



General γ

Prevalence



General γ

Prevalence



General γ: Summary



Numerical results

Numerical simulations confirm mean field predictions

Simulations on
a real Internet 

map



Rationalization of computer virus data

New phase diagram with a null epidemic threshold.
In contrast with what is obtained for regular networks, there is 

now a whole region of the phase diagram in which very low 
prevalence is possible

Low prevalence region!!

scale-free networks

homogeneous networks

Virus can survive
in this region



Epidemic processes:
II The SIR model



SIR model

The Susceptible-Infected-Removed (SIR) model is the simplest 
epidemiological model, capable an outbreak of a disease that 
confers immunity

Such as measles, chicken pox, etc.
Definition

Individuals are either is a susceptible (S) state, an infected 
(I) or a removed [immunized] (R) state
Susceptible individuals become infected (S → I) with 

probability ν if they are connected to other infected 
individuals
Infected individuals recover [or die]  (I → R) with probability 

δ 
Characteristic parameter: spreading rate



Numerical implementation on the SIR model on networks

Numerical algorithm on any network defined as follows:

At each time step, we compute the number of infected 
nodes, Ni, and links emanating from them, Nn

With probability Ni/(Ni + λNn) a randomly chosen infected 
vertex becomes removed
With complementary probability λNn/(Ni + λNn), one of the 
edges is selected and the infection is transmitted through it
Numbers of infected vertices and related edges are updated 
accordingly
Time is increase by t → t + 1/(Ni + λNn)
Iterate this process



Mean field theory

The relevant parameters  the  density of infected individuals of 
degree k, ρk(t), the density of susceptible Sk(t) and the density 
of recovered Rk(t)

Not independent: ρk(t) + Sk(t) + Rk(t) = 1
Only keep track of two

For uncorrelated networks, the rate equations are



Uncorrelated networks

Assuming ρk(0) very small, Sk(0) ≅1, Rk(0)=0, we can directly 
integrate to obtain

Simpler equation for φ(t)

Total epidemic prevalence R∞ = ∑k P(k) Rk(∞) at very large times

250 The SIR model of virus propagation

dSk(t)
dt

= −λkSk(t)"(t), (A6.3)

dRk(t)
dt

= ρk(t). (A6.4)

The factor "(t) represents the average density of infected individuals of vertices
pointed at by any given edge. In uncorrelated networks this quantity can be com-
puted in a self-consistent way. In general, the probability that an edge points to
an infected vertex with degree k′ is proportional to k′ P(k′). However, since the
infected vertex pointed at by the edge has previously received the disease through
an edge that cannot be used for transmission anymore (its originating vertex is
removed), the correct expression is proportional to k − 1, yielding

"(t) = 1
〈k〉

∑

k

(k − 1)P(k)ρk(t). (A6.5)

Equations (A6.2), (A6.3), (A6.4), and (A6.5), combined with the initial conditions
Rk(0) = 0, ρk(0) = ρ0

k , and Sk(0) = 1 − ρ0
k , completely define the SIR model on

any random uncorrelated network with degree distribution P(k). We will consider
in particular the case of an homogeneous initial distribution of infected individu-
als, ρ0

k = ρ0. In this case, in the limit ρ0 → 0, we can substitute ρk(0) & 0 and
Sk(0) & 1. Under this approximation, Eqs. (A6.3) and (A6.4) can be directly inte-
grated, yielding

Sk(t) = e−λkφ(t), Rk(t) =
∫ t

0
ρk(τ ) dτ, (A6.6)

where we have defined the auxiliary function

φ(t) =
∫ t

0
"(τ ) dτ = 1

〈k〉
∑

k

(k − 1)P(k)Rk(t). (A6.7)

In order to get a closed relation for the total density of infected individuals, it is
more convenient to focus on the time evolution of the averaged magnitude φ(t).
To this purpose, let us compute its time derivative

dφ(t)
dt

= 1
〈k〉

∑

k

(k − 1)P(k)ρk(t)

= 1
〈k〉

∑

k

(k − 1)P(k)[1 − Rk(t) − Sk(t)]

= 1 − 1
〈k〉

− φ(t) − 1
〈k〉

∑

k

(k − 1)P(k)e−λkφ(t), (A6.8)

250 The SIR model of virus propagation

dSk(t)
dt

= −λkSk(t)"(t), (A6.3)

dRk(t)
dt

= ρk(t). (A6.4)

The factor "(t) represents the average density of infected individuals of vertices
pointed at by any given edge. In uncorrelated networks this quantity can be com-
puted in a self-consistent way. In general, the probability that an edge points to
an infected vertex with degree k′ is proportional to k′ P(k′). However, since the
infected vertex pointed at by the edge has previously received the disease through
an edge that cannot be used for transmission anymore (its originating vertex is
removed), the correct expression is proportional to k − 1, yielding

"(t) = 1
〈k〉

∑

k

(k − 1)P(k)ρk(t). (A6.5)

Equations (A6.2), (A6.3), (A6.4), and (A6.5), combined with the initial conditions
Rk(0) = 0, ρk(0) = ρ0

k , and Sk(0) = 1 − ρ0
k , completely define the SIR model on

any random uncorrelated network with degree distribution P(k). We will consider
in particular the case of an homogeneous initial distribution of infected individu-
als, ρ0

k = ρ0. In this case, in the limit ρ0 → 0, we can substitute ρk(0) & 0 and
Sk(0) & 1. Under this approximation, Eqs. (A6.3) and (A6.4) can be directly inte-
grated, yielding

Sk(t) = e−λkφ(t), Rk(t) =
∫ t

0
ρk(τ ) dτ, (A6.6)

where we have defined the auxiliary function

φ(t) =
∫ t

0
"(τ ) dτ = 1

〈k〉
∑

k

(k − 1)P(k)Rk(t). (A6.7)

In order to get a closed relation for the total density of infected individuals, it is
more convenient to focus on the time evolution of the averaged magnitude φ(t).
To this purpose, let us compute its time derivative

dφ(t)
dt

= 1
〈k〉

∑

k

(k − 1)P(k)ρk(t)

= 1
〈k〉

∑

k

(k − 1)P(k)[1 − Rk(t) − Sk(t)]

= 1 − 1
〈k〉

− φ(t) − 1
〈k〉

∑

k

(k − 1)P(k)e−λkφ(t), (A6.8)

250 The SIR model of virus propagation

dSk(t)
dt

= −λkSk(t)"(t), (A6.3)

dRk(t)
dt

= ρk(t). (A6.4)

The factor "(t) represents the average density of infected individuals of vertices
pointed at by any given edge. In uncorrelated networks this quantity can be com-
puted in a self-consistent way. In general, the probability that an edge points to
an infected vertex with degree k′ is proportional to k′ P(k′). However, since the
infected vertex pointed at by the edge has previously received the disease through
an edge that cannot be used for transmission anymore (its originating vertex is
removed), the correct expression is proportional to k − 1, yielding

"(t) = 1
〈k〉

∑

k

(k − 1)P(k)ρk(t). (A6.5)

Equations (A6.2), (A6.3), (A6.4), and (A6.5), combined with the initial conditions
Rk(0) = 0, ρk(0) = ρ0

k , and Sk(0) = 1 − ρ0
k , completely define the SIR model on

any random uncorrelated network with degree distribution P(k). We will consider
in particular the case of an homogeneous initial distribution of infected individu-
als, ρ0

k = ρ0. In this case, in the limit ρ0 → 0, we can substitute ρk(0) & 0 and
Sk(0) & 1. Under this approximation, Eqs. (A6.3) and (A6.4) can be directly inte-
grated, yielding
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In order to get a closed relation for the total density of infected individuals, it is
more convenient to focus on the time evolution of the averaged magnitude φ(t).
To this purpose, let us compute its time derivative
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where we have introduced the time dependence of Sk(t) obtained in Eq. (A6.6).
Once Eq. (A6.8) is solved, we can obtain the total epidemic prevalence R∞ as a
function of φ∞ = limt→∞ φ(t). Since Rk(∞) = 1 − Sk(∞), we have

R∞ =
∑

k

P(k)(1 − e−λkφ∞). (A6.9)

For a general P(k) distribution, Eq. (A6.8) cannot be generally solved in a
closed form. However, we can still get useful information on the infinite time limit;
i.e. at the end of the epidemics. Since we have that ρk(∞) = 0, and consequently
limt→∞ dφ(t)/dt = 0, we obtain from Eq. (A6.8) the following self-consistent
equation for φ∞

φ∞ = 1 − 1
〈k〉

− 1
〈k〉

∑

k

(k − 1)P(k)e−λkφ∞ . (A6.10)

The value φ∞ = 0 is always a solution. In order to have a non-zero φ∞ solution,
i.e. a prevalence R∞ > 0, the condition

d
dφ∞

(

1 − 1
〈k〉

− 1
〈k〉

∑

k

(k − 1)P(k)e−λkφ∞

)∣∣∣∣∣
φ∞=0

≥ 1 (A6.11)

must be fulfilled. This relation implies

λ

〈k〉
∑

k

k(k − 1)P(k) ≥ 1, (A6.12)

which defines the epidemic threshold

λc = 〈k〉
〈k2〉 − 〈k〉

, (A6.13)

below which the epidemic prevalence is R∞ = 0, and above which it attains a
finite value R∞ > 0. It is interesting to notice that this is precisely the same value
found for the percolation threshold in generalized networks (see Section 6.5). This
is hardly suprising since, as stressed by Grassberger (1983), the SIR model can
be mapped to an edge percolation process. The SIR model is thus no exception
to the general absence of an epidemic threshold in networks with diverging degree
fluctuations, i.e. 〈k2〉 → ∞. The present results are valid for infinite size networks.
In the case of finite networks of size N the usual size corrections set in.

For the case of correlated random networks (Appendix A4) which are com-
pletely defined by the degree distribution P(k) and the conditional probability
P(k′ | k) that a vertex of degree k has an edge pointing to a vertex of degree k′,
it can be proved (Boguñá et al., 2003b) that the epidemic threshold is inversely
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Solution for γ=3

In the continuous degree approximation

Expanding the exponential integral function in the limit of small 
λ

Integrating the equation for Φ(t), in the limit of small λ

R∞ = 1− 2m2

∫ ∞

m
k−3e−λkφ∞dk

= λ2
(
−m2

)
φ2Ei(−mλφ)− eλ(−m)φ(1− λmφ) + 1
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network composed by N nodes with connectivity distri-
bution P (k) ∼ k−3 and average connectivity 〈k〉 = 2m
(in this work we will consider the parameters m0 = 5 and
m = 3). Despite the well-defined average connectivity, the
scale invariant properties turn out to play a major role
on the physical properties of these networks (for instance,
the resilience to attack [13,14]).

In the continuous k approximation, that substitutes
the discrete variable k for a continuous variable in the
range [m,∞[, the connectivity distribution of the BA
model takes the form

P (k) =
2m2

k3
for k ≥ m. (30)

For this distribution, the first moment is finite, 〈k〉 = 2m,
but the second moment diverges with the network size,〈
k2
〉
∼ m2 log N [36]. In view of the general result equa-

tion (21), we observe that a finite network composed by
N nodes, should exhibit an effective epidemic threshold

λc(N) ∼ 1
log N

, (31)

which appears as a consequence of finite size effects, as
costumarily encountered in nonequilibrium statistical sys-
tems [27]. For very large networks, however, λc(N) will
tend to zero and we will observe a null threshold in the
thermodynamic limit [25,29].

The equation for R∞, with the connectivity distribu-
tion (30) is

R∞ = 1 − 2m2

∫ ∞

m
k−3e−λkφ∞dk. (32)

This integral can be performed and expressed in terms
of the incomplete Gamma function [37]. Expanding the
obtained result for small φ∞ yields

R∞ ' 2λmφ∞. (33)

On its turn, the equation for φ(t), with the connectiv-
ity distribution (30), is

dφ(t)
dt

= 1 − φ(t) − m

∫ ∞

m
k−2e−λkφdk. (34)

Expressing the previous integral in terms of incomplete
Gamma functions and expanding for small φ(t) we are led
to the equation

1
λm

dφ(t)
dt

' φ

[
1 − γE − 1

λm
− ln(λmφ)

]
. (35)

This equation can be integrated, to yield

φ(t) ' 1
λm

exp
(

1 − γE − 1
λm

+ Ae−λmt

)
, (36)

where A is an integration constant. The stationary regime
for long times is

φ∞ ' e1−γE

λm
e−1/λm, (37)
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Fig. 3. Total density of infected individuals R∞ as a function
of 1/λ for the SIR model in BA networks of size N = 106.
The linear behavior on the semi-logarithmic scale proves the
stretched exponential behavior predicted by equation (38). The
inset show the time profile of the average density of infected
individuals at the spreading rate λ = 0.09.

and by inserting this result into the expression for the
total epidemic prevalence we find

R∞ ∼ e−1/λm. (38)

That is, in an infinite network the function R∞ is non-
zero for any non-zero value of λ, which is in agreement
with the predicted threshold λc = 0. This result recovers
the findings of Lloyd and May [23] as well as the behavior
obtained by considering a diverging connectivity variance
in the results reported by May and Anderson for HIV
spreading in heterogeneous populations [3]. By following
this framework is also possible to relate the absence of
the epidemic threshold to the divergence of the basic re-
productive number, customarily defined in traditional epi-
demiological modeling [23,25].

The numerical simulations performed on the BA net-
work confirm the picture extracted from the analytic
treatment. We consider the SIR model on BA networks
of size ranging from N = 103 to N = 106, with m = 3
and thus 〈k〉 = 6. As predicted by the analytic calcula-
tions, Figure 3 shows that R∞ decays with λ as R∞ ∼
exp(−C/λ), where C is a constant. In order to rule out
the presence of finite size effects hiding an abrupt transi-
tion (the so-called smoothing out of critical points [27]),
we have inspected the behavior of the stationary persis-
tence for network sizes varying over three orders of mag-
nitude. The total absence of scaling of R∞ and the perfect
agreement for any size with the analytically predicted ex-
ponential behavior allows us to definitely confirm the ab-
sence of any finite epidemic threshold. A closer look at
R∞ is given in Figure 4. While Figure 3 reports the av-
erage over 104–105 epidemic outbreaks, Figure 4 reports
an illustration of the behavior of the cumulative probabil-
ity P (R∞ > R) of having an outbreak which affects more
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Solution for γ=3

Integrating again

In the stationary regime at large times

For the prevalence
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exp(−C/λ), where C is a constant. In order to rule out
the presence of finite size effects hiding an abrupt transi-
tion (the so-called smoothing out of critical points [27]),
we have inspected the behavior of the stationary persis-
tence for network sizes varying over three orders of mag-
nitude. The total absence of scaling of R∞ and the perfect
agreement for any size with the analytically predicted ex-
ponential behavior allows us to definitely confirm the ab-
sence of any finite epidemic threshold. A closer look at
R∞ is given in Figure 4. While Figure 3 reports the av-
erage over 104–105 epidemic outbreaks, Figure 4 reports
an illustration of the behavior of the cumulative probabil-
ity P (R∞ > R) of having an outbreak which affects more
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network composed by N nodes with connectivity distri-
bution P (k) ∼ k−3 and average connectivity 〈k〉 = 2m
(in this work we will consider the parameters m0 = 5 and
m = 3). Despite the well-defined average connectivity, the
scale invariant properties turn out to play a major role
on the physical properties of these networks (for instance,
the resilience to attack [13,14]).

In the continuous k approximation, that substitutes
the discrete variable k for a continuous variable in the
range [m,∞[, the connectivity distribution of the BA
model takes the form

P (k) =
2m2

k3
for k ≥ m. (30)

For this distribution, the first moment is finite, 〈k〉 = 2m,
but the second moment diverges with the network size,〈
k2
〉
∼ m2 log N [36]. In view of the general result equa-

tion (21), we observe that a finite network composed by
N nodes, should exhibit an effective epidemic threshold

λc(N) ∼ 1
log N

, (31)

which appears as a consequence of finite size effects, as
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tems [27]. For very large networks, however, λc(N) will
tend to zero and we will observe a null threshold in the
thermodynamic limit [25,29].
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tion (30) is

R∞ = 1 − 2m2

∫ ∞

m
k−3e−λkφ∞dk. (32)
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of the incomplete Gamma function [37]. Expanding the
obtained result for small φ∞ yields

R∞ ' 2λmφ∞. (33)

On its turn, the equation for φ(t), with the connectiv-
ity distribution (30), is

dφ(t)
dt

= 1 − φ(t) − m

∫ ∞

m
k−2e−λkφdk. (34)

Expressing the previous integral in terms of incomplete
Gamma functions and expanding for small φ(t) we are led
to the equation

1
λm

dφ(t)
dt

' φ

[
1 − γE − 1

λm
− ln(λmφ)

]
. (35)

This equation can be integrated, to yield

φ(t) ' 1
λm

exp
(

1 − γE − 1
λm

+ Ae−λmt

)
, (36)

where A is an integration constant. The stationary regime
for long times is

φ∞ ' e1−γE

λm
e−1/λm, (37)
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Fig. 3. Total density of infected individuals R∞ as a function
of 1/λ for the SIR model in BA networks of size N = 106.
The linear behavior on the semi-logarithmic scale proves the
stretched exponential behavior predicted by equation (38). The
inset show the time profile of the average density of infected
individuals at the spreading rate λ = 0.09.

and by inserting this result into the expression for the
total epidemic prevalence we find

R∞ ∼ e−1/λm. (38)

That is, in an infinite network the function R∞ is non-
zero for any non-zero value of λ, which is in agreement
with the predicted threshold λc = 0. This result recovers
the findings of Lloyd and May [23] as well as the behavior
obtained by considering a diverging connectivity variance
in the results reported by May and Anderson for HIV
spreading in heterogeneous populations [3]. By following
this framework is also possible to relate the absence of
the epidemic threshold to the divergence of the basic re-
productive number, customarily defined in traditional epi-
demiological modeling [23,25].

The numerical simulations performed on the BA net-
work confirm the picture extracted from the analytic
treatment. We consider the SIR model on BA networks
of size ranging from N = 103 to N = 106, with m = 3
and thus 〈k〉 = 6. As predicted by the analytic calcula-
tions, Figure 3 shows that R∞ decays with λ as R∞ ∼
exp(−C/λ), where C is a constant. In order to rule out
the presence of finite size effects hiding an abrupt transi-
tion (the so-called smoothing out of critical points [27]),
we have inspected the behavior of the stationary persis-
tence for network sizes varying over three orders of mag-
nitude. The total absence of scaling of R∞ and the perfect
agreement for any size with the analytically predicted ex-
ponential behavior allows us to definitely confirm the ab-
sence of any finite epidemic threshold. A closer look at
R∞ is given in Figure 4. While Figure 3 reports the av-
erage over 104–105 epidemic outbreaks, Figure 4 reports
an illustration of the behavior of the cumulative probabil-
ity P (R∞ > R) of having an outbreak which affects more



Numerical check

Solution analogous to
the SIS model; same

happens for other 
values of γ



Epidemic processes:
III Immunization strategies



Immunization

Clearly, epidemics in scale-free networks are really a problem,  
due to the vanishing epidemic threshold
Immunization is thus a necessity in order to impede the 
spreading of infective agents
Different immunization strategies

Immunize everybody
Usual choice in biological contexts

Extremely expensive
A cheaper strategy: Random immunization

Immunize a fraction g of individuals selected
More or less the strategy used in antivirus software

You choose (more or less at random) whether or not 
install antivirus software



Random immunization

Computer simulations in scale-free networks

To complete eradicate
the disease, we must 
immunize a very large 

fraction of the 
population; actually the 
whole population in the 

limit of an infinitely large 
network (analytical 

results …) 



Targeted immunization

Thinking a little bit, we can devise more efficient strategies
The bad effects of scale-free networks arise from a diverging 
second moment <k2> >> 1
This divergence is obviously due to the anomalous amount of 
vertices with very large degree
A possible cure could be to immunize just those vertices of 
large degree

Targeted immunization:
Immunize a fraction g of the most connected vertices of the 
network



Targeted immunization

Computer simulations in scale-free networks

The eradication of the 
disease can be achieved 
by immunizing a very 
small fraction of the 

vertices with the largest 
number of connections. 

Actually, an exponentially 
small number of vertices

 (analytical results …) 



Immunization without global knowledge

Targeted immunization works extremely well, but suffers from a 
practical drawback

We must have complete knowledge of the network in order to 
vaccinate the most connected nodes

Other alternatives have been proposed, requiring less information

Acquaintance immunization:
 A fraction g of nodes are selected, and asked to point one of 
its neighbors
The neighbors, and not the nodes, are immunized
Why it works?

High degree nodes have many edges connected to them; 
following random edges will find those hubs with high 
probability



Reaction-diffusion processes



Reaction-diffusion processes

The theory of reaction-diffusion (RD) processes can be used to 
model a wide variety of dynamical systems

RD processes are defined in terms of:

Set of particles belonging to a certain number of different 
“species” Ai, i=1, …, n

Particles diffuse stochastically, jumping at random between 
nearest neighbor sites
Particles react upon contact according to a given set of 
reaction rules Rj, j=1,…,r

Standard setting: Chemical reactions
But they can be used to model general kinds of processes



Reaction-diffusion processes
Examples:

Diffusion-annihilation process
Single type of particles  A
Particles diffuse, with a diffusion coefficient D
Particles experience the reaction

SIS process
Two types of particles S and I
Particles diffuse, with possible different coefficients DS, DI

Particles experience the reactions

Reaction-diffusion processes in scale-free networks 3

and steady states of the densities of the different species ρAi(t), and on the possible
presence of phase transitions between those states [15].
Epidemic models, such as the Susceptible-Infected-Susceptible (SIS) [16], repre-

sent classical examples of RD dynamics. The SIS model, for instance, corresponds
to a RD process with two species of particles (individuals), infected I and suscepti-
ble S, that interact through the reactions [16, 17]

S+ I δ
−→ 2I,

I µ
−→ S.

(2)

The first reaction in Eq. (2) corresponds to the infection of a susceptible individual
by contact with an infected one, with a probability per unit of time (rate) δ . The
second reaction stands for the spontaneous healing of infected individuals at rate µ .
The behavior of this epidemic model is ruled by the ratio λ = δ/µ , the so-called
spreading rate. The main prediction of the model is the existence of an epidemic
threshold λc, above which the dynamics reaches an endemic state, with a nonzero
density of infected individuals ρI [17]. Below the threshold, on the other hand, any
epidemics dies out in the long term, and the systems is disease-free.
Much is known about the behavior of RD processes on regular homogeneous lat-

tices. In particular, theoretical formalisms have been proposed that allow for general
descriptions of the process in terms of field theories [18, 19, 20, 21] which are then
susceptible of analysis by means of the renormalization group technique [22]. For
example, for the simplest RD process, the diffusion-annihilation process [23]

A+A λ
−→ /0 (3)

in regular lattices of Euclidean dimension d, it is well known that the local density
of A particles, ρ(x, t), is ruled by a Langevin equation [24],

∂ρ(x, t)
∂ t

= D∇2ρ(x, t)−2λρ(x, t)2+η(x, t), (4)

where η(x, t) is a Gaussian white noise, with correlations

〈η(x, t)η(x′, t ′)〉 = −2λρ(x, t)2δ d(x− x′)δ (t− t ′). (5)

Dynamical renormalization group arguments show that the average density of A
particles, ρ(t) = 〈ρ(x, t)〉, behaves in the large time limit as

1
ρ(t)

−
1
ρ0

∼ tα , (6)

where ρ0 is the initial particle density, and the exponent α takes the values α = d/dc
for d≤ dc and α = 1 for d> dc, where dc = 2 is the critical dimension of the process.
For d > dc one thus recovers the homogeneous mean-field solution
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Two basic formalisms

When considering dynamical processes on complex networks 
(or regular lattices), two different perspectives are possible:

Fermionic systems: 
Systems with some “exclusion” principle, that limits the 
number of particles on each vertex
Usually, occupation number ni(t) = 0, 1

Number of particles inside each vertex is limited to 0 
or 1

Bosonic formalism: 
No “exclusion” principles involved
Occupation number ni(t) = 0, 1, … 1 

No limitation in the number of particles on each 
vertex

In some cases, the correct formalism arises in a natural way



Fermionic systems

Example: Small-scale epidemics
Spreading in social networks

Vertices are individuals
Individuals can be only in 
one state, healthy or 
infected
Each state can be 
represented by a 
different kind of particle
Interactions take place 
between connected 
individuals (particles)

Diffusion and
Interaction

Vertex 

Healthy 
individual 
Infected 
individual 



Bosonic systems

Example: Large-scale epidemics
Spreading among cities or countries

Vertices are cities or 
countries
Cities can host many 
individuals
Interactions take place 
inside vertices
Particles move from 
vertex to vertex

Traveling

Diffusion

Interactions

Vertex 

Healthy 
individual 
Infected 
individual 



Limitations of both formalisms

In other cases, there is freedom in the choice of the formalism
In choosing, consider that both formalisms have some 
advantages and limitations on complex networks

Fermionic formalism:
Models generally easy to devise and simulate 
numerically
Analytical theories must be tailored on a case by case 
approach, based on the particular implementation of the 
model
Usually simple to solve analytically
Difficult to implement interactions of more that two 
particles 
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Limitations of both formalisms

Ex: What happens with 3 particle interactions?

Solution 1: Use “intermediate” particles 

Arbitrary and somewhat artificial

A

B

I I

C

D
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Limitations of both formalisms

Solution 2: Interaction among three or more vertices

Difficult to implement numerically and not general
Interactions depend on the degree of the vertices

B

C

A

D
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Limitations of both formalisms

Bosonic formalism:
No limitation in the order of the interactions

Take place inside vertices and do not depend on their 
connectivity

Numerical implementation bit more difficult
But however more general

Analytical theories can be developed for general classes of 
models
Not so easy to solve

Due to the generality of the interactions



Reaction-diffusion processes:
I Fermionic formalism



Diffusion-annihilation process

Choose simplest case: Diffusion-annihilation process

Particles perform an uncorrelated random walk
Sequential update, to avoid undefined events

When one particle lands on top of another, both annihilate
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Heterogeneous mean field theory

Dynamical equation for the relative density of particles in the 
vertices of degree k, ρk(t)

In general networks:

Note: we are neglecting again dynamical correlations between 
two vertices!!

Destruction 
term

by diffusion

Destruction 
term

by reaction

Creation 
term

by diffusion



Approximate solution in correlated networks

General equation in correlated networks (λ = 1)

At very large times, ρk becomes very small
Diffusion-limited regime (negligible interactions)
We can neglect the second order terms in the rate equation

Old diffusion equation!!
We have thus the steady state solution

Note the difference
with the diffusion

problem



Approximate solution in correlated networks

Equation for the total density ρ(t) = ∑k P(k) ρk(t)

Where we have used the degree detailed balance condition
Inserting the low density approximation, we obtain a solution 
valid for any correlation pattern

Solution only for finite networks
finite <k2> (more later)



Uncorrelated networks

Mean field equation for uncorrelated networks (λ = 1)

Quasi-stationary approximation

Final equation for the total density



General γ

Infinite networks



General γ

Asymptotic expansion

General solution



General γ

Finite networks of size N

For tc such that 

In scale-free networks



Summary for general γ

For SF networks we obtain:

Solution for infinite networks

Solution for finite networks   

Density decays with time as a 
power-law with an exponent 
depending on the degree 
distribution

Above a certain cross-over 
time, linear behavior with a 
slope growing with the 
network size



Numerical results

Numerical simulations confirm the predictions of mean field 
theory



Numerical results

Further check: for finite networks

If γ = 2.5 
Sl
op
e



Reaction-diffusion processes:
II Bosonic formalism



Bosonic RD processes in complex networks

Reactions take place inside vertices
Only interaction between vertices is by diffusion (random 
jumping) of particles

Same scheme as in Euclidean lattices: the only difference in 
behavior is the different topology in which diffusion takes 
place

Enough to induce relevant differences

Reaction

Diffusion



Bosonic HMF formalism

Starting point for analytical treatment: MF formalism
Particles of different species Aα, α=1, … , S
Particles diffuse (jump to nearest neighbors) with rate Dα

Reactions Rr, r=1, …, R given by the stoichiometric equations

MF formalism based on rate equations for the partial densities 
ρα, k(t) of Aα particles in vertices of degree k

Two terms
Diffusion 

Random jumps between adjacent vertices
Reactions 

Modeled by the law of mass action

λr = Reaction rate



Bosonic HMF formalism

For a complex network characterized by P(k) and P(k’|k)
Partial densities

Total densities

Equation independent of the correlation pattern

General rate equations, valid of any RD process

Diffusion Law of mass 
action 



One-species RD processes

Simplest case S=1 (one single species of particles)
MF rate equation becomes (D = 1)

S=1 RD processes can be classified in two main classes
Steady state processes

Posses one or more steady states at large time, with 
possible phase transitions among them

Continuously decaying processes
Particle density decays continuously with time



Steady-state bosonic RD processes

Possibility of steady states and phase transitions
Linear stability analysis

Jacobian matrix for Γ0 = 0 (no spontaneous particle creation)

Unique eigenvector vk=k and eigenvalue

If there are steady states and a phase transition
 Λ > 0 = steady state ρ ≠ 0: active phase
 Λ < 0 = steady state ρ = 0: absorbing phase

Absorbing state phase transition

Threshold Λc = 0, independent of topological heterogeneity



Diffusion-limited regime

Information can be obtained for general S=1 RD processes in 
the very small density regime
Imposing ∂t ρk(t)=0 in uncorrelated networks, and considering ρ 
very small,

Inserting in the equation for ρ, we obtain, for finite networks

qm=smallest reaction order

Homogeneous MF solution, with a depressing factor 
<kqm>-1/(qm-1)



On scale-free networks and the value of γ

For uncorrelated scale-free networks, P(k) » k-γ

Topological effects play a role for γ < qm+1
For γ > qm+1, homogeneous MF theory applies

Conclusion: The previous famous threshold γ = 3 for the 
observation of topological effects arises from considering 
only processes with order qm=2

Percolation, contact process, epidemics, Ising model, …

In the general case, a threshold γ = qm+1 is to be expected!



Monotonously decaying RD processes: Diffusion-limited regime

For any correlation pattern, and keeping only linear terms

Performing a quasi-static (adiabatic) approximation, we can 
approximate

Substituting into the full equation for ρ(t), for finite networks, 
with any correlation pattern

Homogeneous MF solution, with a depressing factor 
<kqm>-1/(qm-1)



Specific examples

In order to go beyond the diffusion-limited approximation, 
specific RD processes must be considered

Steady state processes
Branching-annihilating random walk (BARW)



Bosonic BARW

General results
For any correlation pattern, the BARW exhibits an absorbing 
state phase transition at a critical point Λc = µc =0

Diffusion-limited regime (in uncorrelated SF networks)

General behavior for finite networks



Bosonic BARW

Particular case q=2
Steady-state solution (∂t ρ=0) for uncorrelated networks

Particular square root behavior at large densities

If ρ < ρX, with                    where kc in the network cutoff, 
then

The diffusion-limited regime is recovered



Bosonic BARW

For infinite networks, within the continuous degree 
approximation, self-consistent equation for the density

Final solution for small ρ (µ)

We recover the critical point µc=0

In finite (uncorrelated) networks, it should be observed for 



Bosonic BARW: Numerical check

Partial densities ρk in the steady state, for p=q=2

Thus

k
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Bosonic BARW: Numerical check

Infinite network solution not observable in finite networks
For finite networks q=p=2



Specific examples

In order to go beyond the diffusion-limited approximation, 
specific RD processes must be considered

Monotonously decaying processes
Diffusion-annihilation process (DA)

BARW with p=0



Bosonic DA

General results
For any correlation pattern, in a finite network, at t >> 1 
density is dominated by the diffusion-limited regime



Bosonic DA

Particular case q=2
Performing the adiabatic approximation, partial densities 
given by

Again, particular square root behavior at large times

If ρ < ρ£, with                           where kc in the network 
cutoff, then

The diffusion-limited regime is recovered



Bosonic DA

For infinite networks, within the continuous degree 
approximation, we find the self-consistent equation

Final solution for large t

In finite networks should be observed for



Bosonic DA: Numerical check

Partial densities ρk in the steady state, for q=2

Thus

k



Bosonic BA: Numerical 

Infinite network solution not available in finite networks
For finite networks for any q

Correlated 
SF networks

Uncorrelated 
SF networks

q=2 q=3

q=4



Bosonic BA: Numerical 

Additionally, for the numerical prefactor



Ordering dynamics



Glauber dynamics at T=0

Ordering dynamics that can model the evolution of systems of 
social agents (e.g. the opinion of agents with respect to a 
certain issue) in terms of a binary variable that is updated in 
response to the pressure of the peers of each individual
Definition:

Ising variables ( σi  = ± 1) in the vertices of a network

Spins are updated as a function of the local field

With probability



Mean field theory

Dynamical equation for the probability that a vertex of degree k 
is in a +1 state qk(t)

Destruction terms

Creation terms

J.S
tat.M

ech.
(2006)

P
05001

Zero temperature Glauber dynamics on complex networks

where Prob[hk > 0], Prob[hk < 0], and Prob[hk = 0] are the normalized probabilities
that the local field at the vertices of degree k is positive, negative or zero, respectively.
Rearranging the terms in equation (5) we can write

dqk(t)

dt
= −qk(t) + Prob[hk > 0] +

1

2
Prob[hk = 0]. (6)

In order to estimate the probabilities of the local field hk, the relevant quantity to
consider is the probability Qk that an edge departing from a vertex of degree k points to a
+1 spin. For a generic network, statistically characterized by its degree distribution P (k)
and its degree correlations given by the conditional probability P (k′|k) that a vertex of
degree k is connected to a vertex of degree k′ [22], the probability that an edge from a
vertex of degree k points to a +1 spin is given by

Qk =
∑

k′

P (k′|k)qk′, (7)

that is, it is proportional to the probability that a vertex k is connected to a vertex of
degree k′ times the probability that this vertex is in a +1 state, averaged over all possible
values of the degree k′. For random uncorrelated networks, the probability that any given
edge points to a vertex of degree k′ is proportional to the number of edges emanating from
those vertices, i.e., to k′P (k′). Therefore, the normalized conditional probability takes the
simplified form P (k′|k) = k′P (k′)/〈k〉, so the probability Qk is independent of k and can
be written as [17]

Q =
1

〈k〉
∑

k

kP (k)qk. (8)

Assuming that the probability of having a positive spin at the end of an edge departing
from a k vertex is independent of the values of the spins at the extremes of the other k−1
edges (which corresponds to a MF assumption), we have that the probability that ! edges
from a k vertex point to positive spins is given by a binomial distribution. The local field
at a k vertex can be zero only if k is even and exactly half of its edges point to +1 spins.
Thus

Prob[hk = 0] =

(
k

k/2

)
Qk/2(1 − Q)k/2, (9)

for k even. On the other hand, hk is positive when more than half of its edges point to
+1 spins. Therefore, the probability of observing a positive local field is

Prob[hk > 0] =
k∑

!="(k+1)/2#

(
k
!

)
Q!(1 − Q)k−!, (10)

where $x% is the smallest integer larger than or equal to x. In this way, we can write the
rate equation for the probabilities qk as

dqk(t)

dt
= −qk(t) + Φk(Q), (11)

doi:10.1088/1742-5468/2006/05/P05001 5



Uncorrelated networks

Define probability that a vertex is connected to a neighbor in 
state +1

Independent of the state of the original vertex
The local field can be zero only if k is even and exactly half of 
its edges point to +1 spins.

Thus 

The local field can be positive when more than half of its edges 
point to +1 spins

Thus



Uncorrelated networks

Final equation

And for Q

Very tedious equation to solve… but it can be done 
asymptotically



Mean field predictions in SF networks

The systems always orders (all spins  +1 or -1 at t = 1)

Ordering time tord starting from symmetric initial conditions 
(disordered system, with zero magnetization)

Time tord till achieve a given magnetization
For 2 < γ < 5/2, tord decreases with N (network size)

For γ > 5/2, tord increases logarithmically with N



Numerical results

Not all systems become ordered

In the thermodynamic limit, no network is able to order, 
whatever its value of γ



Numerical results

Ordering time tord restricted to those runs that get actually 
ordered

For γ > 5/2  does not grow logarithmically, but as a power 
law
Forγ < 5/2 does not decrease, but increases instead

 γ = 4 > 5/2  γ = 2.25 < 5/2



Why mean field does not work?

The most relevant mean field assumption turns out to be the 
following:

The probability that a spin σi is connected to a +1 spin (the 
dynamical variable Q), is independent of the state of σi 

Numerically, instead strong dynamical correlations appear in the 
system, invalidating the mean field approximation!!!

…

Probability that a +1 spin
is connected to a +1 spin

Probability that a -1 spin
is connected to a +1 spin



Beyond heterogeneous mean 
field theory

I Quenched mean-field theory



Beyond HMF
HMF is a simple and tractable theory, but it implies two strong 
assumptions

Neglects dynamical correlations
Neglects the actual structure of the network

Annealed network approximation

As we have seen, dynamical correlations can lead to the complete 
breakdown of HMF theory

Introduction of dynamical correlations is a highly complex task
Although doable is some cases

Introduction of the actual network structure can be done by means of 
the Quenched mean field (QMF) theory

Let us see how it works in the case of the SIS model 



QMF theory for the SIS model
Continuous time master equation approach for the probability ρi(t) that 
vertex i is infected at time t [µ curation rate, δ infection rate]

Qi(t) = probability that vertex i becomes infected

In the limit Δt → 0, defining λ = δ / µ

Evident cancelation of dynamical correlations, specially explicit in 
the second term

�̇i(t) = ��i(t) + �[1 � �i(t)]
�

j

Aij�j(t)

�i(t + �t) = (1 � µ�t)�i(t) + Qi(t)[1 � �i(t)].

Qi(t) = 1 �
�

j

[1 � ��tAij�j(t)]



Threshold in QMF theory

Linear stability analysis
Linearized equation:

Associated Jacobian:

Solution ρi = 0 unstable when the largest eigenvalue of J is 
positive

Threshold QMF

Jij = ��ij + �Aij

�QMF
c =

1

�N
ΛN = largest eigenvalue of the 
adjacency matrix

�̇i(t) � ��i(t) + �
�

j

Aij�j(t)



Comparison of QMF and HMF thresholds

For non SF networks, both thresholds are finite in the limit N → ∞
In SF networks we observe different scalings with N:

Size dependence in uncorrelated networks through largest degree 
kmax

kmax ~ N1/2, γ≤3,  kmax ~ N1/(γ-1), γ>3
kmax → ∞ for N → ∞

HMF threshold (directly)

QMF: Use mathematical results �N � max[
�

kmax, �k2�/�k�]

�HMF
c =

�k�
�k2� �

�
k��3

max � � 3
const. � > 3

.

�QMF
c =

1

�N
�

�
�

�

�k�
�k2� � k��3

max 2 < � < 5/2

1/
�

kmax � > 5/2



Which theory is more accurate?
High precision determination of the critical point: The susceptibility 
method
Define susceptibility

For fixed N, as a function of λ, susceptibility shows a peak at λp(N)
In systems with constant λc, peak
scales with N

Position of the peak tends to 
the critical point

Height of the peak also scales

� = N
��2� � ���2

���

�p(N) � �c � N�1/�̄
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Fig. 3. Scaling of the second moment (omitting the largest cluster in each configu-
ration) as function of the threshold f and the system size N . (a)〈s2〉(f) for different
system sizes in the snooker model. (b-d) Data collapse obtained by expressing the
rescaled second moment of cluster sizes N−φ〈s2〉 as function of the rescaled variable
(f − fc)N1/2ν for the three models defined in the text: (b) snooker model, (c) indepen-
dent q-model and (d) microcanonic q-model The values of the corresponding parameters
fc, φ and ν are summarized in Table 1. We do not show the data for very small system
sizes where the collapse takes place only in a small region around the maximum. For
the q-models, the systems studied had the same vertical and horizontal linear sizes.

6 Discussion

We have introduced a new approach to investigate the geometry of force net-
works, based on statistics of clusters created by forces larger then a given thresh-
old. The existence of a critical threshold uncovers a scale-invariance of force net-
works, which we characterized by the critical exponents ν and φ for the correla-
tion length and the second moment of the cluster size distribution. In particular,
in each network we identify a fractal object of dimension D = φ+1, given by the

χ

λ
�p(N) ⇠ N�/⇥



Numerical determination of the epidemic threshold

We will assume the same behavior in the SIS model in 
networks

E.g.

The peak provides an estimate of the critical point, with an 
error that depends on N but becomes small for large network 
size

Susceptibility height at the peak should also depend on 
network size

�p(N) � �c(N) � N�1/�̄

�p(N) ⇠ N�/⇥



Numerical Check: Annealed networks 4

10
1

10
2

10
3

χ

10
4

4 x 10
4

16 x 10
4

64 x 10
4

256 x 10
4

1024 x 10
4

10
-2

10
-1

λ

10
-4

10
-3

10
-2

10
-1

10
0

χ
N

a)

10
3

10
4

10
5

10
6

10
7

N

10
-3

10
-2

10
-1

λ
p
(N) [γ=2.25]

λ
c

HMF
 [γ=2.25]

λ
p
(N) [γ=3.50]

λ
c

HMF
 [γ=3.50]

b)

FIG. 1. (Color online) (a) Plot of � = N(h⇢2i � h⇢i2)/h⇢i
and �N = N(h⇢2i � h⇢i2) for the SIS process on annealed SF
networks with degree exponent � = 2.25 and di↵erent net-
work sizes. The susceptibility � is more e�cient to determine
the e↵ective size-dependent threshold. (b) E↵ective threshold
from the susceptibility peak �p(N) as a function of N , for an-
nealed SF networks with � = 2.25 and � = 3.5. The e↵ective
threshold shows a very good agreement with the numerically
evaluated threshold �HMF

c (Eq. (1)).

usual susceptibility �N defined in the analysis of absorb-
ing phase transition [8], in networks with � = 2.25 and
di↵erent sizes N . We observe that � provides a more
clear-cut definition of the susceptibility peak. The same
behavior is observed for � = 3.5 (data not shown). In
Fig. 1(b) we plot the evolution of the susceptibility peak
�p(N) as a function of network size for fixed � = 2.25
and � = 3.5, and compare it with the numerically eval-
uated HMF prediction. These results confirm that �p

provides an excellent approximation of the exact result
�HMF
c , both when the threshold goes to zero with N and

when it converges to a finite value. The di↵erences ob-
served might be attributed to corrections to scaling, such
as those presented in systems with a finite threshold in
the thermodynamic limit, see Sec. II B. Therefore, in the
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FIG. 2. (Color online) Susceptibility as function of � for RRN
of increasing (from bottom to top) size and degree k = 10.
The susceptibility peak is closer to the theoretical prediction
of the pair approximation than to the HMF and QMF results.

rest of the paper we use the position of the peak of the
susceptibility � as the numerical estimate of the position
of the threshold.

IV. HOMOGENEOUS NETWORKS: THE
RANDOM REGULAR NETWORK

As a first non-trivial application of the technique of the
susceptibility peak to evaluate the SIS epidemic threshold
in homogeneous networks, we consider the case of random
regular networks (RRN) that is, networks where all nodes
have exactly the same degree k, while links are randomly
distributed among them, avoiding self-connections and
multiple connections. In this case, HMF theory predicts
trivially a constant threshold �HMF

c = 1/k. The pre-
diction of QMF theory takes exactly the same value, as
can be easily seen by applying Perron-Frobenius theorem
[30]. Fig. 2 shows the susceptibility � as a function of �
for RRNs with increasing N and degree k = 10. The
numerical estimated threshold is quite o↵ from the the-
oretical value 1/k for HMF and QMF, indicating that
both theories are essentially incorrect, while the suscep-
tibility peak falls close (increasingly so for larger N) to
the value �pair

c = 1/(k�1), which is the prediction of the
pair approximation.

From this analysis we conclude that HMF and QMF
provide a reasonable approximation but not the exact
position of the threshold. They fail just because they
neglect dynamical correlations among the state of neigh-
bors, which are instead better taken into account by pair
approximation approaches [12, 13].
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threshold shows a very good agreement with the numerically
evaluated threshold �HMF

c (Eq. (1)).

usual susceptibility �N defined in the analysis of absorb-
ing phase transition [8], in networks with � = 2.25 and
di↵erent sizes N . We observe that � provides a more
clear-cut definition of the susceptibility peak. The same
behavior is observed for � = 3.5 (data not shown). In
Fig. 1(b) we plot the evolution of the susceptibility peak
�p(N) as a function of network size for fixed � = 2.25
and � = 3.5, and compare it with the numerically eval-
uated HMF prediction. These results confirm that �p

provides an excellent approximation of the exact result
�HMF
c , both when the threshold goes to zero with N and

when it converges to a finite value. The di↵erences ob-
served might be attributed to corrections to scaling, such
as those presented in systems with a finite threshold in
the thermodynamic limit, see Sec. II B. Therefore, in the
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rest of the paper we use the position of the peak of the
susceptibility � as the numerical estimate of the position
of the threshold.

IV. HOMOGENEOUS NETWORKS: THE
RANDOM REGULAR NETWORK

As a first non-trivial application of the technique of the
susceptibility peak to evaluate the SIS epidemic threshold
in homogeneous networks, we consider the case of random
regular networks (RRN) that is, networks where all nodes
have exactly the same degree k, while links are randomly
distributed among them, avoiding self-connections and
multiple connections. In this case, HMF theory predicts
trivially a constant threshold �HMF

c = 1/k. The pre-
diction of QMF theory takes exactly the same value, as
can be easily seen by applying Perron-Frobenius theorem
[30]. Fig. 2 shows the susceptibility � as a function of �
for RRNs with increasing N and degree k = 10. The
numerical estimated threshold is quite o↵ from the the-
oretical value 1/k for HMF and QMF, indicating that
both theories are essentially incorrect, while the suscep-
tibility peak falls close (increasingly so for larger N) to
the value �pair

c = 1/(k�1), which is the prediction of the
pair approximation.

From this analysis we conclude that HMF and QMF
provide a reasonable approximation but not the exact
position of the threshold. They fail just because they
neglect dynamical correlations among the state of neigh-
bors, which are instead better taken into account by pair
approximation approaches [12, 13].

In annealed networks, HMF 
theory is exact.
Ideal benchmark 

Υ = 
2.25

λ

Perfect agreement of 
theory with susceptibility 
estimates of thresholds

Well defined susceptibility
with a peak scaling with 
network size



Quenched SF networks γ ≤ 5/2
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kmax computed in star graphs with di�erent values of kmax
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V. HETEROGENEOUS NETWORKS: THE
STAR GRAPH

In this Section we focus on the simplest case of a het-
erogeneous network with vanishing epidemic threshold,
namely the star network, which is composed by a hub
of degree kmax, to which kmax leaves of degree 1 are at-
tached. For this star graph, the largest eigenvalue of
the adjacency matrix can be easily shown to be

⇤
kmax.

Therefore the QMF prediction from Eq. (2) is ⇥QMF
c =

1/
⇤
kmax. On the other hand, the HMF result from

Eq. (1) takes in this case the form is ⇥HMF
c = 2/(kmax+1).

Figure 3 shows the susceptibility ⌅ versus ⇥
⇤
kmax com-

puted for star graphs with a wide range of values of
kmax. It clearly shows that the scaling ⇥c ⇥

⇤
kmax

is correct, however the value of the prefactor is around
1.5, rather than 1, in agreement with the rigorous bound
⇥c � 1/

⇤
kmax derived by Ganesh et al. [31]. The star

graph constitutes thus the simplest example of a net-
work for which HMF theory does not work. This failure
of HMF is altogether not surprising, since this particular
network is strongly correlated at the degree level, and
therefore fails to fulfill one necessary condition for the
validity of the HMF result Eq. (1). QMF theory instead
provides the correct scaling of the threshold with network
size, although the prefactor is not exact.

VI. HETEROGENEOUS NETWORKS:
POWER-LAW DEGREE DISTRIBUTED GRAPHS

We now consider the SIS model on networks with
power-law degree distributions, P (k) ⇥ k�⇥ , built using
the uncorrelated configuration model (UCM) [32]. This
procedure is equal to the standard Molloy-Reed config-
uration model [33] with the additional constraint that
the degree values are strictly bounded by kmax ⇥ N1/2.
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FIG. 4. (Color online) E�ective threshold ⇥p(N) from the
susceptibility peak as a function of network size N for uncor-
related SF networks with � = 2.25, compared with the HMF
and QMF predictions. Inset: Susceptibility ⇤ as a function
of ⇥ for di�erent network sizes (increasing from right to left).

This bound guarantees that no topological correlations
are present in the network [34], and therefore fulfills the
requirement needed for the applicability of the HMF re-
sult Eq. (1).
We analyze three values of �, representative of three

regimes characterized by di�erent expressions for the the-
oretical estimates.

A. � < 5/2

In Fig. 4 we show the shape of the susceptibility ⌅ ver-
sus ⇥ (inset) and the numerical threshold ⇥p as a func-
tion of the network size N (main plot) for � = 2.25,
compared with the predictions of the two theoretical ap-
proaches. It turns out that the numerical results from
the susceptibility peak agree with good accuracy with
both HMF and QMF theories, which in their turn tend
to coincide. While it was expected that the theoretical
formulas scaled in the same way with N , see Eq. (3), the
fact that they tend to coincide indicates that the prefac-
tor c2 in Eq. (3) is close to 1. Fig. 4 shows that HMF
and QMF predictions are apparently exact in the limit
of large systems for � < 5/2.

In this particular range of �, since the transition can
be identified with high accuracy, it is possible to extract
additional information about the epidemic phase transi-
tion. We consider thus the scaling of of the quantities ⇤s,
⌅ and ⌅N with N at the transition point. According to
standard notation [8], the expected scaling with system
size should be (see Sec. II B):

⇤s ⇥ N��/⇤̄ , ⌅N ⇥ N⇥0/⇤̄ , ⌅ ⇥ N (⇥0+�)/⇤̄ . (6)

In Fig. 5(a) we plot the values of ⇤s, ⌅ and ⌅N , evalu-
ated at the susceptibility peak, as a function of N in SF

Both HMF and QMF predict 
the same scaling form of 
the threshold

γ = 2.25

Very good agreement of theory with 
susceptibility estimates of thresholds at 
large N

�HM
c ⇠ �QMF

c ⇠ k��3
max
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FIG. 5. (Color online) (a) Numerical values of ⇤s, ⌅ and ⌅N

as a function of N evaluated at the susceptibility peak in SF
networks with � = 2.25. (b) Stationary density of infected
nodes as a function of the distance to the threshold ⇥p in SF
networks with � = 2.25 and N = 107.

networks with ⇥ = 2.25. Fitting the curves in Fig. 5(a)
to a power law form, we find the exponents:

�/⌅̄ = 0.65, ⇥⇥/⌅̄ = �0.28, (⇥⇥ + �)/⌅̄ = 0.37. (7)

These exponents explain why ⌃ is the best choice to de-
termine the threshold. The maximum of the standard
susceptibility ⌃N scales with a negative exponent ⇥⇥, and
thus, in the limit of large N , the transition is character-
ized by a discontinuity. The value ⇥⇥ + � > 0 instead
ensures a clearly defined maximum for the susceptibility
⌃ diverging as N ⇤ ⌅.

By plotting the order parameter ⇧s as a function of
the distance from the e�ective threshold, we can attempt
to determine the exponent �, which is defined by ⇧ ⇥
[⇤� ⇤c(N)]� . In Fig. 5(b) we show such a plot, for a SF
network with ⇥ = 2.25 and size N = 107. According to
HMF theory [9], the � exponent is expected to take the
value � = 1/(3 � ⇥) = 4/3, while the QMF approach of
Van Mieghem [35] predicts � = 1. The numerical results
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FIG. 6. (Color online) E�ective threshold ⇥p(N) as a function
of network size N for uncorrelated SF networks with � =
2.75, compared with the HMF and QMF predictions. Inset:
Susceptibility ⌅ as a function of ⇥ for di�erent network sizes
(increasing from right to left).

presented in Fig. 5(b) yield an e�ective exponent lying
between the theoretical predictions, so that the validity
of none of them can be excluded.

B. 5/2 < � < 3

In this interval of ⇥, Eq. (3) predicts that a di�erent
regime sets in, with the threshold set by the inverse of

the square-root of kmax i.e. ⇤CL
c ⇥ k�1/2

max = N�1/4, while

HMF theory predicts ⇤HMF
c ⇥ k�(3�⇥)

max = N�(3�⇥)/2 up
to ⇥ = 3. For the values of N which can be simulated nu-
merically, the two theoretical predictions are quite close
but do not coincide.
Figure 6 shows the results of the susceptibility analysis

for SF networks with ⇥ = 2.75. From this plot, we con-
clude that the numerical results do not conform to the
HMF behavior, the more so for large system size. The
numerical threshold ⇤p(N) scales instead as the inverse
of the largest eigenvalue, but with a prefactor di�erent
from unity. The QMF threshold provides hence an ap-
proximation to the numerical threshold, scaling in the
same way, but with an accuracy of the order of 30%.

C. � > 3

For ⇥ > 3 HMF theory yields a finite value of the
threshold, which instead still vanishes according to QMF.
Since sample-to-sample fluctuations of the value of kmax

are quite large in this regime, we consider for each value
of N only networks with kmax equal to the mean value
⇧kmax⌃ [21].
In Fig. 7(a) we plot the susceptibility as a function

of ⇤ in networks with ⇥ = 3.5. The behavior of the

Quenched SF networks γ ≤ 5/2

Quality of data in this case 
allows to estimate the 
scaling exponents

γ = 2.25

Fitted exponents:

Additional comparison with

⇥N = N [h�2i � h�i2]

Fulfill scaling relation

�N � � � �s

�s � N�0.65

� � N0.37

�N � N�0.28

�s � N��1

� � N�2

�N � N�3
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as a function of N evaluated at the susceptibility peak in SF
networks with � = 2.25. (b) Stationary density of infected
nodes as a function of the distance to the threshold ⇥p in SF
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networks with ⇥ = 2.25. Fitting the curves in Fig. 5(a)
to a power law form, we find the exponents:

�/⌅̄ = 0.65, ⇥⇥/⌅̄ = �0.28, (⇥⇥ + �)/⌅̄ = 0.37. (7)

These exponents explain why ⌃ is the best choice to de-
termine the threshold. The maximum of the standard
susceptibility ⌃N scales with a negative exponent ⇥⇥, and
thus, in the limit of large N , the transition is character-
ized by a discontinuity. The value ⇥⇥ + � > 0 instead
ensures a clearly defined maximum for the susceptibility
⌃ diverging as N ⇤ ⌅.

By plotting the order parameter ⇧s as a function of
the distance from the e�ective threshold, we can attempt
to determine the exponent �, which is defined by ⇧ ⇥
[⇤� ⇤c(N)]� . In Fig. 5(b) we show such a plot, for a SF
network with ⇥ = 2.25 and size N = 107. According to
HMF theory [9], the � exponent is expected to take the
value � = 1/(3 � ⇥) = 4/3, while the QMF approach of
Van Mieghem [35] predicts � = 1. The numerical results
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FIG. 6. (Color online) E�ective threshold ⇥p(N) as a function
of network size N for uncorrelated SF networks with � =
2.75, compared with the HMF and QMF predictions. Inset:
Susceptibility ⌅ as a function of ⇥ for di�erent network sizes
(increasing from right to left).

presented in Fig. 5(b) yield an e�ective exponent lying
between the theoretical predictions, so that the validity
of none of them can be excluded.

B. 5/2 < � < 3

In this interval of ⇥, Eq. (3) predicts that a di�erent
regime sets in, with the threshold set by the inverse of

the square-root of kmax i.e. ⇤CL
c ⇥ k�1/2

max = N�1/4, while

HMF theory predicts ⇤HMF
c ⇥ k�(3�⇥)

max = N�(3�⇥)/2 up
to ⇥ = 3. For the values of N which can be simulated nu-
merically, the two theoretical predictions are quite close
but do not coincide.
Figure 6 shows the results of the susceptibility analysis

for SF networks with ⇥ = 2.75. From this plot, we con-
clude that the numerical results do not conform to the
HMF behavior, the more so for large system size. The
numerical threshold ⇤p(N) scales instead as the inverse
of the largest eigenvalue, but with a prefactor di�erent
from unity. The QMF threshold provides hence an ap-
proximation to the numerical threshold, scaling in the
same way, but with an accuracy of the order of 30%.

C. � > 3

For ⇥ > 3 HMF theory yields a finite value of the
threshold, which instead still vanishes according to QMF.
Since sample-to-sample fluctuations of the value of kmax

are quite large in this regime, we consider for each value
of N only networks with kmax equal to the mean value
⇧kmax⌃ [21].
In Fig. 7(a) we plot the susceptibility as a function

of ⇤ in networks with ⇥ = 3.5. The behavior of the

Quenched SF networks 5/2 ≤ γ ≤ 3

HMF and QMF predict a 
different scaling of the 
threshold with network size

γ = 2.75

Numerics do not conform to the HMF behavior, specially for large N
QMF theory provides instead the correct scaling of λc with N, but with a 
different prefactor (accuracy of estimate ~ 30%)

�HM
c ⇠ k��3

max

�QMF
c ⇠ k�1/2

max
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FIG. 7. (Color online) (a) Susceptibility ⇤ as a function of
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(b) E�ective thresholds ⇥p(N) determined by the rightmost
and leftmost (when present) susceptibility peak as a function
of network size N for uncorrelated networks with � = 3.5,
compared with the HMF and QMF predictions.

susceptibility in this regime is surprisingly di⇥erent from
the one observed in the case � < 3. As we can see, while
for small network sizes a well defined and unique peak
is present for relatively large values of ⇥, at a position
quite compatible with the prediction of HMF, as N grows
another feature emerges for smaller values of ⇥, giving
rise to a secondary peak for the largest considered sizes.

The evidence presented in Fig. 7(a) can be better un-
derstood with the help of the QS distribution P̄n of the
order parameter (number of active nodes n = ⇤sN) de-
picted in Fig. 8. For large values of ⇥, the distribution
has a single peak (apart from the one in n = 1.). As ⇥
is reduced, a secondary peak starts to appear at smaller
values of n and rapidly takes over. Further decreasing ⇥
leads to the disappearance of the all peaks for finite n,
which signals the transition into the absorbing state.

Figs. 7(a) and 8 reflect the existence of two competing
thresholds, associated to two di⇥erent mechanisms trig-
gering the transition [22]. The secondary peak for small
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FIG. 8. (Color online) Quasi-stationary distribution of the
number of active nodes Pn for an uncorrelated network of size
N = 3� 106 and � = 3.5. Di�erent curves are for decreasing
values of ⇥ (bottom to top).

⇥, whose position scales with network size as predicted by
QMF formula, see Fig. 7(b), is associated to the presence
of the star-subgraph centered around the largest hub,
which for ⇥ & 1/�N is able to sustain alone the active
state [21, 22]. This kind of transition starts from a local-
ized region [36] and then propagates the infection to the
rest of the network. Its position is set by kmax and does
not change depending on the quenched network realiza-
tion. Notice also the rounded shape of the susceptibility
peak, reminiscent of the what is found for star graphs
(see Fig. 3). The peak for large ⇥, which occurs not far
the value predicted by HMF and is much narrower, is
associated to the set of most densely connected nodes in
the network (maximum k-core) collectively turning into
the active state. The location of this transition fluctuates
a lot depending on the realization.
It is clear that for asymptotically large N the first

mechanism dominates. In this limit one expects the pic-
ture to be analogous to the case 5/2 < � < 3 presented
above: a single peak moving toward zero as N increases,
as predicted by Eq. (2) (but with a di⇥erent prefactor).
However, the crossover to this stage is very slow and val-
ues of N much larger than those attainable with our com-
putational resources would be needed to check in detail
the accuracy of Eq. (2) in this regime.

VII. CONCLUSIONS

In this paper we have presented a large scale numeri-
cal analysis of the SIS model on networks. Our approach
presents two improvements over previous numerical stud-
ies of the SIS. Firstly, we have implemented the quasi-
stationary state (QS) method, which allows to overcome
the problems associated to simulations based on sur-
viving averages, yielding far better statistics with much
smaller uncertainties. Secondly, to overcome the prob-

Quenched SF networks γ > 3

HMF predicts a finite 
threshold and QMF a 
vanishing one γ = 3.50

More complex situation:

• Small networks lead to a well defined peak for large of λ, at a position 
quite compatible with the prediction of HMF: λc constant for large N, 
although with large fluctuations

• For larger N, another feature emerges for small  λ, giving rise to a 
secondary peak for the largest sizes considered

�HM
c ⇠ const.

�QMF
c ⇠ k�1/2

max



A new numerical approach
We need a different approach to compute the critical point for γ > 3
Look at the lifetime T of epidemic outbreaks
Below λc, T is finite and small; above λc, T is infinite (in infinite 
networks)

That’s a problem...
Fix it looking at the coverage C (fraction of different nodes infected)
Below λc, C is small; above λc, C=1
Idea: Look at T*, time till either the infection dies, or C = C*, fixed

Below λc, T* ~ T and is small; 
above λc , T* is small (infection 
propagates very quickly)
Right at λc, T* should show a 
peak, that allows to determine 
the epidemic threshold
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New threshold for  SF networks γ > 3

The match is not exact, but as in the case of γ < 3, the scaling 
of the threshold is correctly predicted by QMF
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Further improvements

More complex theories, including long range dynamical 
correlations, can give better approximations to the numerical 
threshold

In any case, they represent corrections: The correct scaling 
is already given by QMF theory
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What we have not seen ...



Other perspectives, not touched considered here

Effects of non-trivial correlations
Hard task, some results available

Effects of clustering
Doable in simple cases: Percolation

Effects of long-range dynamical correlations
Doable in some cases, such as SIS

Dynamical processes on small networks
HMF will not work

The effects of a non-static network: The topology (edges) 
changes with time

Temporal networks
Coupling between dynamical processes and network dynamics

Doable with simple models


