ECCS WARM-UP

School on Complex Networks, Sept 13-15

Marta Sales-Pardo

Department of Chemical Engineering, Universitat Rovira i Virgili

From network modules to network inference

ECCS 2013
Barcelona

September 12, 2013

ECCS WARM-UP

The promise of networks research
School on Complex Networks, Sept 13-15

\rightarrow What can we learn about a system by studying the topology of the corresponding interaction network?

ECCS WARM-UP

School on Complex Networks, Sept 13-15
Challenge \#1: There is much about the interactions in the networks we study that we don't know

ECCS WARM-UP

School on Complex Networks, Sept 13-15
Challenge \#1: There is much about the interactions in the networks we study that we don't know

ECCS WARM-UP

Network properties are often sensitive to even low error rates

ECCS WARM-UP

ECCS WARM-UP

School on Complex Networks, Sept 13-15
Challenge \#2: From data to knowledge (learning)

Giot et al., Science (2003)

ECCSWARM-UP $-\mathbf{w}$

 School on Complex Networks, Sept 13-15
TheScientist
 F1000'S MAGAZINE OF THE LIFE SCIENCES

DANGEROUS LIAISONS

HOW SCIENCE IS BULLETPROOFING THE MILLIONS OF PEOPLE AT RISK OF DRUG-DRUG INTERACTIONS

THE FBI IS
COMING TO
YOUR LAB
BEST PLACES TO WORK IN
INDUSTRY

ECCS WARM-UP

\rightarrow Network modularity
\rightarrow The problem
\rightarrow Algorithms and their evaluation
\rightarrow Are networks really modular?
\rightarrow So what, if real networks are modular?
\rightarrow Beyond modules: positions and block models
\rightarrow BREAK
\rightarrow Network inference
\rightarrow Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
\rightarrow Network inference using hierarchical random graphs
\rightarrow Network inference using stochastic block models
\rightarrow Back to drugs and movies, take-home message

ECCS WARM-UP

We need a "cartography" of complex networks

\rightarrow Modules
\rightarrow We divide the system into "regions"

ECCS WARM-UP? ${ }^{\text {psely connected groups of nodes (modules }}$ or communities) are good candidates for our "regions"

Source: http://www-personal.umich.edu/~mejn/networks/school.gif

ECCS WARM-UP

Heuristic methods to identify modules in complex networks: Girvan-Newman algorithm

\rightarrow Identify the most central edge in the network
\rightarrow Remove the most central edge in the network
\rightarrow Iterate the process

ECCS WARM-UP

We can evaluate the performance of the Girvan-Newman algorithm using model network with known communities

ECCS WARM-UP

Heuristic methods to identify modules in complex networks: Girvan-Newman algorithm

\rightarrow Identify the most central edge in the network
\rightarrow Remove the most central edge in the network
\rightarrow Iterate the process

PROBLEM

When do we stop?

f_{s} : fraction of links within module s

ECCS WARM-UP

f_{s} : fraction of links within module s

F_{s} : expected fraction of links within module s, for a random partition of the nodes

Modularity of a partition: $M=\sum_{s}\left(f_{s}-F_{s}\right)$

Newman \& Girvan, PRE (2003)

ECCS WARM-UP

Finding the maximum modularity is a difficult (NP-complete) combinatorial optimization problem

Partition

ECCS WARM-UP we use simulated annealing to obtain the partition with largest modularity

Partition

Guimera, Sales-Pardo \& Amaral, PRE (2004); Guimera \& Amaral, Nature (2005); Sales-Pardo et al. PNAS (2007).

ECCS WARM-UP

We can evaluate the performance of the Girvan-Newman algorithm using model network with known communities

ECCS WARM-UP

CPSMARM-UP The "Louvain method" is a fast and quite accurate modularity-maximization method

 that works with multi-million node networks
\rightarrow Resolution limit: modularity optimization may fail to identify modules smaller than a scale which depends on the total size of the network and on the degree of interconnectedness of the modules, even in cases where modules are unambiguously defined (Fortunato, Barthelemy, PNAS 2006).
\rightarrow Modular structure may be hierarchical (modules within modules) and modularity maximization only captures one scale (or, worse, a mixture of scales) (Sales-Pardo, Guimera, Moreira, Amaral, PNAS 2007).

ECCS WARM-UP

School on Complex Networks, Sept 13-15

Infomap is a very accurate algorithm not based on modularity maximization

\rightarrow Problems with the benchmark networks I have discussed so far:
\rightarrow All modules have the same size
\rightarrow All nodes in a module have more or less the same connections (Poisson degree distribution)

ECCS WARM-UP

LFR benchmark networks have broad community size and degree distributions

Lancichinetti, Fortunato \& Radicchi, PRE (2008)

CCS WARM-UP

Fortunato, Phys. Rep. (2010)
\rightarrow Network modularity
$\boldsymbol{\rightarrow}$ The problem
\rightarrow Algorithms and their evaluation
\rightarrow Are networks really modular?
\rightarrow So what, if real networks are modular?
\rightarrow Beyond modules: positions and block models
\rightarrow BREAK
\rightarrow Network inference
\rightarrow Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
\rightarrow Network inference using hierarchical random graphs
\rightarrow Network inference using stochastic block models
\rightarrow Back to drugs and movies, take-home message
\rightarrow Problem: If you look for modules, you find them (even in purely random graphs!!)
\rightarrow Solution:
\rightarrow Obtain the modularity M for the real network
\rightarrow Compare M to the distribution of modularities in an ensemble of random networks with the same degree sequence as the real network

ECCS WARM-UP

\rightarrow Network modularity
\rightarrow The problem
\rightarrow Algorithms and their evaluation
\rightarrow Are networks really modular?
\rightarrow So what, if real networks are modular?
\rightarrow Beyond modules: positions and block models
\rightarrow BREAK
\rightarrow Network inference
\rightarrow Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
\rightarrow Network inference using hierarchical random graphs
\rightarrow Network inference using stochastic block models
\rightarrow Back to drugs and movies, take-home message

ECCS WARM-UPconnectors that span several modules are often key for system-wide behavior

ECCS WARM-UP

The modular structure of a network determines its dynamic behavior

Arenas, Díaz-Guilera, Pérez-Vicente, PRL (2006)

ECCS WARM-UP

\rightarrow Network modularity
$\boldsymbol{\rightarrow}$ The problem
\rightarrow Algorithms and their evaluation
\rightarrow Are networks really modular?
\rightarrow So what, if real networks are modular
\rightarrow BREAK
\rightarrow Network inference
\rightarrow Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
\rightarrow Network inference using hierarchical random graphs
\rightarrow Network inference using stochastic block models
\rightarrow Back to drugs and movies, take-home message

Modularity

Modularity
country A country B

Role-to-role correlations

international	local
airports	airports

ECCS WARM-UP

\rightarrow Network modularity
$\boldsymbol{\rightarrow}$ The problem
\rightarrow Algorithms and their evaluation
\rightarrow Are networks really modular?
$\boldsymbol{\rightarrow}$ So what, if real networks are modular?
\rightarrow Beyond modules: positions and block models
\rightarrow Hands-on: module-identification algorithms
\rightarrow BREAK
\rightarrow Network inference
\rightarrow Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
\rightarrow Network inference using hierarchical random graphs
\rightarrow Network inference using stochastic block models
\rightarrow Back to drugs and movies, take-home message and more hands-on
\rightarrow Suppose that A and B are two "events":
$\rightarrow p(A, B)$ is the probability of both events
$\rightarrow p(A \mid B)$ is the probability of A given B
$\rightarrow p(A)$ is the probability of event A "regardless of B "
\rightarrow We have that

$$
\begin{aligned}
& p(A, B)=p(A \mid B) p(B) \\
& p(B, A)=p(B \mid A) p(A)
\end{aligned}
$$

\rightarrow But since $p(A, B)=P(B, A)$ we arrive at

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

\rightarrow Suppose that A and B are two "events":
$\rightarrow p(A, B)$ is the probability of both events
$\rightarrow p(A \mid B)$ is the probability of A given B
$\rightarrow p(A)$ is the probability of event A "regardless of B "
\rightarrow We have that

$$
\begin{aligned}
& p(A, B)=p(A \mid B) p(B) \\
& p(B, A)=p(B \mid A) p(A)
\end{aligned}
$$

\rightarrow But since $p(A, B)=P(B, A)$ we arrive at

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

\rightarrow Suppose we have some data D and we want to be able to say something about a model M (estimate the parameters of the model, compare to other models, et c.)
\rightarrow Using Bayes formula

$$
p(M \mid D)=\frac{p(D \mid M) p(M)}{p(D)}
$$

\rightarrow Since we (usually) only care about terms that depend on the model

$$
p(M \mid D) \propto p(D \mid M) p(M)
$$

\rightarrow Suppose we have some data D and we want to be able to say something about a model M (estimate the parameters of the model, compare to other models, et c.)
\rightarrow Using Bayes formula

$$
p(M \mid D)=\frac{p(D \mid M) p(M)}{p(D)}
$$

\rightarrow Since we (usually) only care about terms that depend on the model

$$
p(M \mid D) \propto p(D \mid M) p(M)
$$

ECCS WARM-UP

\rightarrow Suppose we have some data D and we want to be able to say something about a model M (estimate the parameters of the model, compare to other models, et c.)
\rightarrow Using Bayes formula

$$
p(M \mid D)=\frac{p(D \mid M) p(M)}{p(D)}
$$

\rightarrow Since we (usually) only care about terms that depend on the model

$$
p(M \mid D) \propto p(D \mid M) p(M)
$$

ECCS WARM-UP

\rightarrow Suppose we have some data D and we want to be able to say something about a model M (estimate the parameters of the model, compare to other models, et c.)
\rightarrow Using Bayes formula

$$
p(M \mid D)=\frac{p(D \mid M) p(M)}{p(D)}
$$

\rightarrow Since we (usually) only care about terms that depend on the model

$$
p(M \mid D) \propto p(D \mid M) p(M)
$$

Posterior
Plausibility of the Model given the Data

Likelihood Plausibility of the Data given the Model

Prior
Plausibility of the model given previous information
\rightarrow Imagine that we toss a coin 5 times and get $\{\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}\}$
\rightarrow How do we estimate the bias h of our coin towards H ?
\rightarrow High school (naïve frequentist) approach: $h=3 / 5$.
\rightarrow Imagine that we toss a coin 5 times and get $\{\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}\}$
\rightarrow How do we estimate the bias h of our coin towards H ?
\rightarrow Bernoullii process At each toss, independently of the previous ones, the probability of getting H is h. The model is fully specified by h (therefore, M := h)
\rightarrow Imagine that we toss a coin 5 times and get $\{\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}\}$
\rightarrow How do we estimate the bias h of our coin towards H ?
\rightarrow Bernoullii process At each toss, independently of the previous ones, the probability of getting H is h. The model is fully specified by h (therefore, M := h)
\rightarrow Then, the probability of getting $\{\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}\}$ is

$$
p(\{H, H, T, H, T\} \mid h)=h \times h \times(1-h) \times h \times(1-h)=h^{3}(1-h)^{2}
$$

\rightarrow Imagine that we toss a coin 5 times and get $\{\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}\}$
\rightarrow How do we estimate the bias h of our coin towards H ?
\rightarrow Bernoullii process At each toss, independently of the previous ones, the probability of getting H is h. The model is fully specified by h (therefore, M := h)
\rightarrow Then, the probability of getting $\{\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}\}$ is

$$
p(\{H, H, T, H, T\} \mid h)=h \times h \times(1-h) \times h \times(1-h)=h^{3}(1-h)^{2}
$$

\rightarrow If, a priori, we don't know anything about the right value of h, we can assume that the prior is uniform

$$
p(h)=1, h \in[0,1]
$$

\rightarrow Imagine that we toss a coin 5 times and get $\{\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}\}$
\rightarrow How do we estimate the bias h of our coin towards H ?
\rightarrow Bernoulli process At each toss, independently of the previous ones, the probability of getting H is h. The model is fully specified by h (therefore, M := h)
\rightarrow Then, the probability of getting $\{\mathrm{H}, \mathrm{H}, \mathrm{T}, \mathrm{H}, \mathrm{T}\}$ is

$$
p(\{H, H, T, H, T\} \mid h)=h \times h \times(1-h) \times h \times(1-h)=h^{3}(1-h)^{2}
$$

\rightarrow If, a priori, we don't know anything about the right value of h, we can assume that the prior is uniform

$$
p(h)=1, h \in[0,1]
$$

\rightarrow Then, we finally have that

$$
p(h \mid\{H, H, T, H, T\}) \propto p(\{H, H, T, H, T\} \mid h) p(h)=h^{3}(1-h)^{2}
$$

ECCS WARM-UP

Let's estimate the bias of a coin towards heads using Bayesian inference

$$
p(h \mid\{H, H, T, H, T\}) \propto h^{3}(1-h)^{2}
$$

ECCS WARM-UP

\rightarrow From the naïve frequentist approach: $h=3 / 5$, so that's the probability of getting H in the next toss
\rightarrow Within the Bayesian approach, we can/should consider all evidence we have:

ECCS WARM-UP

\rightarrow From the naïve frequentist approach: $h=3 / 5$, so that's the probability of getting H in the next toss
\rightarrow Within the Bayesian approach, we can/should consider all evidence we have:

$$
p(\text { next toss }=H \mid\{H, H, T, H, T\})=\int_{0}^{1} h \times p(h \mid\{H, H, T, H, T\}) d h
$$

\rightarrow Like in the previous example, we are often interested in evaluating integrals of the form

$$
\begin{gathered}
p(\text { next toss }=H \mid\{H, H, T, H, T\})=\int_{0}^{1} h \times p(h \mid\{H, H, T, H, T\}) d h=\frac{4}{7} \\
\langle f(M)\rangle=\int f(M) \times p(M \mid D) d M
\end{gathered}
$$

\rightarrow Unlike the previous example, more often than not these integrals cannot be calculated exactly
\rightarrow In such cases, we can use Markov Chain Monte Carlo (MCMC)

$$
\langle f(M)\rangle=\frac{1}{N} \sum_{i} f\left(M_{i}\right)
$$

where the sum is over N models sampled (using the Gibbs sampler or the Metropolis-Hastings algorithm) from the distribution $p(M \mid D)$

ECCS WARM-UP

\rightarrow Network modularity
$\boldsymbol{\rightarrow}$ The problem
\rightarrow Algorithms and their evaluation
\rightarrow Are networks really modular?
\rightarrow So what, if real networks are modular?
\rightarrow Beyond modules: positions and block models
\rightarrow BREAK
\rightarrow Network inference
\rightarrow Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
\rightarrow Network inference using hierarchical random graphs
\rightarrow Network inference using stochastic block models
\rightarrow Back to drugs and movies, take-home message

ECCS WARM-UP

School on Complex Networks, Sept 13-15
Challenge \#1: There is much about the interactions in the networks we study that we don't know

\rightarrow Given a single noisy observation of a network, determine:
\rightarrow Missing interactions Interactions that exist but are not captured in our observation of the system
\rightarrow Spurious interactions Interactions that do not exist but, for some reason, are included in our observation
\rightarrow Reconstruct the network, so that our reconstruction has properties that are closer to the properties of the true network
\rightarrow Given a single noisy observation of a network, determine:
\rightarrow Missing interactions Interactions that exist but are not captured in our observation of the system
\rightarrow Spurious interactions Interactions that do not exist but, for some reason, are included in our observation
\rightarrow Reconstruct the network, so that our reconstruction has properties that are closer to the properties of the true network
\rightarrow But:
\rightarrow We want to be able to do this for arbitrary real networks about which we don't know anything
\rightarrow There seems to be a paradox in trying to identify what is wrong in a network observation---from the network observation itself ! when in comes to solving the paradox
\rightarrow Scenario 1: We don't have a clue about what the network should look like, or where does it come from (mechanistically or statistically):
\rightarrow We cannot do anything
\rightarrow Scenario 2: We do have some ideas about the structure of the network:
\rightarrow We can formalize these ideas into a set of models
\rightarrow We can use the models to assess what is likely to be missing/wrong
\rightarrow We assume our network is the outcome of an undetermined model M, from a (potentially infinite) collection of models \mathcal{M}
\rightarrow We observe a network A°
\rightarrow Given my observation A^{0}, what is the probability that a property X takes the value $X=x$ if we generate a new network (with the same model)?

$$
p\left(X=x \mid A^{0}\right)=\int_{\mathcal{M}} p(X=x \mid M) p\left(M \mid A^{0}\right) d M
$$

\rightarrow We call $p\left(X=x \mid A^{0}\right)$ the reliability of the $X=x$ measurement
\rightarrow In particular, we can calculate the probability $p\left(A_{i j}=1 \mid A^{O}\right)$ that a link exists

\rightarrow A hierarchical network with structure on many scales, and the corresponding hierarchical random graph.
\rightarrow Each internal node of the dendrogram is associated with a probability that a pair of vertices in the left and right subtrees of that node are connected. (The shades of the internal nodes in the figure represent the probabilities.)

ECCS WARM-UP

One can test if inference methods can identify missing and spurious interactions in real networks

ECCS WARM-UP

School on Complex Networks, Sept 13-15
Inference with the hierarchical random graph is often more accurate than "local" metrics

ECCS WARM-UP

\rightarrow Network modularity
\rightarrow The problem
\rightarrow Algorithms and their evaluation
\rightarrow Are networks really modular?
$\boldsymbol{\rightarrow}$ So what, if real networks are modular?
\rightarrow Beyond modules: positions and block models
\rightarrow BREAK
\rightarrow Network inference
\rightarrow Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
\rightarrow Network inference using hierarchical random graphs
\rightarrow Network inference using stochastic block models
\rightarrow Back to drugs and movies, take-home message

ECCS WARM-UP

School on Complex Networks, Sept 13-15

Modularity
country A country B

Role-to-role correlations

international	local
airports	airports

CCS WARM-UP

School on Complex Networks, Sept 13-15
random graphs at identifying missing interactions

Guimera, Sales-Pardo, PNAS (2009)

CCS WARM-UP

School on Complex Networks, Sept 13-15 random graphs at identifying spurious interactions

\rightarrow Challenges:
\rightarrow We don't know how many links need to be added and removed
\rightarrow Links cannot be added and removed independently of each other

ECcs warmup

We define a network reliability: the network reconstruction is the most reliable network
\rightarrow The reliability of a network is $R_{A}^{N}=p\left(A \mid A^{O}\right)$

$$
p\left(A \mid A^{0}\right)=\int_{\mathcal{M}} p(A \mid M) p\left(M \mid A^{0}\right) d M
$$

\rightarrow The reconstruction A^{R} is the network that maximizes R_{A}^{N}
\rightarrow We obtain A^{R} using uphill search

ECCS WARM-UP Do reconstructions improve estimates of network properties?

Reconstructed network
How do
network
properties
change?

ECCS WARM-UP

School on Complex Networks, Sept 13-15

Network reconstructions provide better estimates of global network properties than the observations themselves

ECCS WARM-UP

Network reconstructions provide better estimates of global network properties than the observations themselves

ECCS WARM-UP

\rightarrow Network modularity
$\boldsymbol{\rightarrow}$ The problem
\rightarrow Algorithms and their evaluation
\rightarrow Are networks really modular?
\rightarrow So what, if real networks are modular?
\rightarrow Beyond modules: positions and block models
\rightarrow Hands-on: module-identification algorithms
\rightarrow BREAK
\rightarrow Network inference
\rightarrow Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
\rightarrow Network inference using hierarchical random graphs
\rightarrow Network inference using stochastic block models
\rightarrow Back to drugs and movies, take-home message and more hands-on

ECCSWARM-UP $-\mathbf{w}$

 School on Complex Networks, Sept 13-15
TheScientist
 F1000'S MAGAZINE OF THE LIFE SCIENCES

DANGEROUS LIAISONS

HOW SCIENCE IS BULLETPROOFING THE MILLIONS OF PEOPLE AT RISK OF DRUG-DRUG INTERACTIONS

THE FBI IS
COMING TO
YOUR LAB
BEST PLACES TO WORK IN
INDUSTRY

ECCS WARM- ${ }_{\text {Will be predict which severe drug interactions }}^{\text {Pe }}$ (

Guimera, Sales-Pardo PloS Comp Biol (2013)

ECCS WARM-UP

ECCS WARM-UP

Predicting human preferences can be reformulated as a problem of network

A

\rightarrow MovieLens set: 100,000 real 1-5 movie ratings by $\sim 1,000$ users
$\rightarrow 5$ independent splits of the data into 80,000 observed ratings and 20,000 validation ratings

ECCS WARM-UP

\rightarrow Funding

\rightarrow More about our research:
\rightarrow http://seeslab.info
\rightarrow @sees_lab

