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The promise of networks research

➔ What can we learn about a system by studying the 
topology of the corresponding interaction network?
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von Mering et al., Nature (2002)

Challenge #1: There is much about the 
interactions in the networks we study

that we don't know
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von Mering et al., Nature (2002)

Challenge #1: There is much about the 
interactions in the networks we study
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True network Observed network Test

How do 
network 

properties 
change?
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We can test what is the effect of
random errors in our network observations
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Network properties are often sensitive
to even low error rates
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Network properties are often sensitive
to even low error rates
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Giot et al., Science (2003)

Challenge #2: From data
to knowledge (learning)
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With the same tools we can predict if 
combining two drugs poses a risk to health...
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...or whether you are going to like
“The Dark Knight rises”!
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Outline

➔ Network modularity
➔ The problem
➔ Algorithms and their evaluation
➔ Are networks really modular?
➔ So what, if real networks are modular?
➔ Beyond modules: positions and block models

➔ BREAK

➔ Network inference
➔ Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
➔ Network inference using hierarchical random graphs
➔ Network inference using stochastic block models

➔ Back to drugs and movies, take-home message 
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We need a “cartography” of complex 
networks

➔Modules
➔ We divide the 

system into 
“regions”
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Densely connected groups of nodes (modules 
or communities) are good candidates

for our “regions”

Source: http://www-personal.umich.edu/~mejn/networks/school.gif
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Girvan & Newman, PNAS (2002)

A
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H I

G

Heuristic methods to identify modules in 
complex networks:

Girvan-Newman algorithm

➔Identify the most central 
edge in the network

➔Remove the most central 
edge in the network

➔Iterate the process
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We can evaluate the performance of the 
Girvan-Newman algorithm using model 

network with known communities
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Girvan & Newman, PNAS (2002)
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Heuristic methods to identify modules in 
complex networks:

Girvan-Newman algorithm

➔Identify the most central 
edge in the network

➔Remove the most central 
edge in the network

➔Iterate the process

PROBLEM
When do we stop?
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fs: fraction of links 
within module s

A quantitative measure of modularity
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Newman & Girvan, PRE (2003)

fs: fraction of links 
within module s

Fs: expected fraction of 
links within module s, for a 

random partition of the 
nodes

Modularity of a partition:

A quantitative measure of modularity
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Guimera, Sales-Pardo & Amaral, PRE (2004); Guimera & Amaral, Nature (2005)

Finding the maximum modularity
is a difficult (NP-complete)

combinatorial optimization problem
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Simulated 
Annealing

Guimera, Sales-Pardo & Amaral, PRE (2004); Guimera & Amaral, Nature (2005); Sales-Pardo et al. PNAS (2007).

We use simulated annealing to obtain the 
partition with largest modularity
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We can evaluate the performance of the 
Girvan-Newman algorithm using model 

network with known communities



22

ECCS WARM-UP
School on Complex Networks, Sept 13-15 

Danon, Díaz-Guilera, Duch, 
Arenas, JSTAT (2005)

Algorithm comparison
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The “Louvain method” is a fast and quite 
accurate modularity-maximization method

that works with multi-million node networks

Blondel, Guillaume, Lambiotte, Lefebvre, JSTAT (2008)
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There are problems with modularity 
maximization

➔ Resolution limit: modularity optimization may fail to identify modules 
smaller than a scale which depends on the total size of the network 
and on the degree of interconnectedness of the modules, even in 
cases where modules are unambiguously defined (Fortunato, 
Barthelemy, PNAS 2006).

➔ Modular structure may be hierarchical (modules within modules) and 
modularity maximization only captures one scale (or, worse, a mixture 
of scales) (Sales-Pardo, Guimera, Moreira, Amaral, PNAS 2007).
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Infomap is a very accurate algorithm
not based on modularity maximization

Rosvall & Bergstrom, PNAS (2008)
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There are some problems with the benchmark 
networks I have discussed so far

➔ Problems with the benchmark networks I have discussed so far:
➔ All modules have the same size
➔ All nodes in a module have more or less the same connections (Poisson 

degree distribution)

 Lancichinetti, Fortunato & Radicchi, PRE (2008)
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LFR benchmark networks have broad 
community size and degree distributions

 Lancichinetti, Fortunato & Radicchi, PRE (2008)
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Algorithm comparison on LFR
benchmark networks

 Fortunato, Phys. Rep. (2010)
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Outline

➔ Network modularity
➔ The problem
➔ Algorithms and their evaluation
➔ Are networks really modular?
➔ So what, if real networks are modular?
➔ Beyond modules: positions and block models

➔ BREAK

➔ Network inference
➔ Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
➔ Network inference using hierarchical random graphs
➔ Network inference using stochastic block models

➔ Back to drugs and movies, take-home message 
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Are real networks modular?

Guimerà, Sales-Pardo, Amaral, PRE (2004)

➔ Problem: If you look for modules, you find them (even in purely 
random graphs!!)

➔ Solution:
➔ Obtain the modularity M for the real network
➔ Compare M to the distribution of modularities in an ensemble of 

random networks with the same degree sequence as the real 
network
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Modular

Non modular

Guimerà, Sales-Pardo, Amaral, Nature Physics (2007)

All networks we have studied are 
significantly modular



32

ECCS WARM-UP
School on Complex Networks, Sept 13-15 

Outline
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➔ BREAK

➔ Network inference
➔ Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
➔ Network inference using hierarchical random graphs
➔ Network inference using stochastic block models

➔ Back to drugs and movies, take-home message 
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Connectors that span several modules are 
often key for system-wide behavior

Burt, Structural Holes: The Social Structure of 
Competition (1995)

Guimera, Amaral, Nature (2005)
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Arenas, Díaz-Guilera, Pérez-Vicente, PRL (2006)

The modular structure of a network
determines its dynamic behavior
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Outline

➔ Network modularity
➔ The problem
➔ Algorithms and their evaluation
➔ Are networks really modular?
➔ So what, if real networks are modular

➔ BREAK

➔ Network inference
➔ Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
➔ Network inference using hierarchical random graphs
➔ Network inference using stochastic block models
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Stochastic block models are network models 
that account for modularity

and other group-based features

Modularity
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Stochastic block models are network models 
that account for modularity

and other group-based features

Modularity Role-to-role correlations
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Outline

➔ Network modularity
➔ The problem
➔ Algorithms and their evaluation
➔ Are networks really modular?
➔ So what, if real networks are modular?
➔ Beyond modules: positions and block models
➔ Hands-on: module-identification algorithms

➔ BREAK

➔ Network inference
➔ Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
➔ Network inference using hierarchical random graphs
➔ Network inference using stochastic block models

➔ Back to drugs and movies, take-home message and more hands-on
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Bayes formula / rule / theorem

➔ Suppose that A and B are two “events”:
➔ p(A,B) is the probability of both events 
➔ p(A|B) is the probability of A given B
➔ p(A) is the probability of event A “regardless of B”

➔ We have that

➔ But since p(A,B)=P(B,A)  we arrive at
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➔ Suppose that A and B are two “events”:
➔ p(A,B) is the probability of both events 
➔ p(A|B) is the probability of A given B
➔ p(A) is the probability of event A “regardless of B”

➔ We have that

➔ But since p(A,B)=P(B,A)  we arrive at



41

ECCS WARM-UP
School on Complex Networks, Sept 13-15 

Bayesian inference

➔ Suppose we have some data D and we want to be able to say 
something about a model M (estimate the parameters of the model, 
compare to other models, et c.)

➔ Using Bayes formula

➔ Since we (usually) only care about terms that depend on the model
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➔ Suppose we have some data D and we want to be able to say 
something about a model M (estimate the parameters of the model, 
compare to other models, et c.)

➔ Using Bayes formula

➔ Since we (usually) only care about terms that depend on the model

Posterior
Plausibility of the
Model given the
Data

Bayesian inference
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➔ Suppose we have some data D and we want to be able to say 
something about a model M (estimate the parameters of the model, 
compare to other models, et c.)

➔ Using Bayes formula

➔ Since we (usually) only care about terms that depend on the model

Posterior
Plausibility of the
Model given the
Data

Likelihood
Plausibility of
the Data given
the Model

Bayesian inference
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➔ Suppose we have some data D and we want to be able to say 
something about a model M (estimate the parameters of the model, 
compare to other models, et c.)

➔ Using Bayes formula

➔ Since we (usually) only care about terms that depend on the model

Posterior
Plausibility of the
Model given the
Data

Prior
Plausibility of the model
given previous information

Likelihood
Plausibility of
the Data given
the Model

Bayesian inference
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Let's estimate the bias of a coin 
towards heads

➔ Imagine that we toss a coin 5 times and get {H,H,T,H,T}
➔ How do we estimate the bias h of our coin towards H?

➔ High school (naïve frequentist) approach: h = 3/5.
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Let's estimate the bias of a coin towards
heads using Bayesian inference

➔ Imagine that we toss a coin 5 times and get {H,H,T,H,T}
➔ How do we estimate the bias h of our coin towards H?

➔ Bernoulli process At each toss, independently of the previous 
ones, the probability of getting H is h. The model is fully specified by h  
(therefore, M := h)
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Let's estimate the bias of a coin towards
 heads using Bayesian inference

➔ Imagine that we toss a coin 5 times and get {H,H,T,H,T}
➔ How do we estimate the bias h of our coin towards H?

➔ Bernoulli process At each toss, independently of the previous 
ones, the probability of getting H is h. The model is fully specified by h  
(therefore, M := h)

➔ Then, the probability of getting {H,H,T,H,T} is
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Let's estimate the bias of a coin towards
 heads using Bayesian inference

➔ Imagine that we toss a coin 5 times and get {H,H,T,H,T}
➔ How do we estimate the bias h of our coin towards H?

➔ Bernoulli process At each toss, independently of the previous 
ones, the probability of getting H is h. The model is fully specified by h  
(therefore, M := h)

➔ Then, the probability of getting {H,H,T,H,T} is

➔ If, a priori, we don't know anything about the right value of h, we can 
assume that the prior is uniform
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Let's estimate the bias of a coin towards
 heads using Bayesian inference

➔ Imagine that we toss a coin 5 times and get {H,H,T,H,T}
➔ How do we estimate the bias h of our coin towards H?

➔ Bernoulli process At each toss, independently of the previous 
ones, the probability of getting H is h. The model is fully specified by h  
(therefore, M := h)

➔ Then, the probability of getting {H,H,T,H,T} is

➔ If, a priori, we don't know anything about the right value of h, we can 
assume that the prior is uniform

➔ Then, we finally have that
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Let's estimate the bias of a coin towards
 heads using Bayesian inference
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Let's now estimate the probability
that the next toss gives H

➔ From the naïve frequentist approach: h=3/5, so that's the probability of 
getting H in the next toss

➔ Within the Bayesian approach, we can/should consider all evidence 
we have:
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Let's now estimate the probability
that the next toss gives H

➔ From the naïve frequentist approach: h=3/5, so that's the probability of 
getting H in the next toss

➔ Within the Bayesian approach, we can/should consider all evidence 
we have:
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Markov Chain Monte Carlo
for Bayesian model averaging

➔ Like in the previous example, we are often interested in evaluating 
integrals of the form

➔ Unlike the previous example, more often than not these integrals 
cannot be calculated exactly

➔ In such cases, we can use Markov Chain Monte Carlo (MCMC)

where the sum is over N models sampled (using the Gibbs sampler or 
the Metropolis-Hastings algorithm) from the distribution p(M|D)
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Outline

➔ Network modularity
➔ The problem
➔ Algorithms and their evaluation
➔ Are networks really modular?
➔ So what, if real networks are modular?
➔ Beyond modules: positions and block models

➔ BREAK

➔ Network inference
➔ Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
➔ Network inference using hierarchical random graphs
➔ Network inference using stochastic block models

➔ Back to drugs and movies, take-home message
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von Mering et al., Nature (2002)

Challenge #1: There is much about the 
interactions in the networks we study

that we don't know
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What is to be done?

➔Given a single noisy observation of a network, determine:
➔ Missing interactions   Interactions that exist but are not 

captured in our observation of the system
➔ Spurious interactions   Interactions that do not exist but, 

for some reason, are included in our observation

➔Reconstruct the network, so that our reconstruction has 
properties that are closer to the properties of the true 
network
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What is to be done?

➔Given a single noisy observation of a network, determine:
➔ Missing interactions   Interactions that exist but are not 

captured in our observation of the system
➔ Spurious interactions   Interactions that do not exist but, 

for some reason, are included in our observation

➔Reconstruct the network, so that our reconstruction has 
properties that are closer to the properties of the true 
network

➔But:
➔We want to be able to do this for arbitrary real 

networks about which we don't know anything
➔There seems to be a paradox in trying to identify 

what is wrong in a network observation---from the 
network observation itself !
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➔ Scenario 1: We don't have a clue about what the network should look 
like, or where does it come from (mechanistically or statistically):
➔ We cannot do anything

 
➔ Scenario 2: We do have some ideas about the structure of the 

network:
➔ We can formalize these ideas into a set of models
➔ We can use the models to assess what is likely to be missing/wrong

There are two possible scenarios
when in comes to solving the paradox
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The “reliability formalism”

➔ We assume our network is the outcome of an undetermined model M, 

from a (potentially infinite) collection of models M
➔ We observe a network AO

➔ Given my observation AO, what is the probability that a property X 
takes the value X=x  if we generate a new network (with the same 
model)?

➔ We call p(X=x|AO) the reliability of the X=x measurement

➔ In particular, we can calculate the probability 
that a link exists
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Clauset, Moore, Newman, Nature (2008)

Network inference using
the hierarchical random graph model

➔ A hierarchical network with 
structure on many scales, and 
the corresponding hierarchical 
random graph.

➔ Each internal node of the 
dendrogram is associated with a 
probability that a pair of vertices 
in the left and right subtrees of 
that node are connected. (The 
shades of the internal nodes in 
the figure represent the 
probabilities.)
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True network Observed network Test

How often 
is AB more 

reliable 
than CD?

How often is 
CD less reliable

 than AB?

M
is
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ng

in
te

ra
ct
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n

s
S

pu
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te
ra

ct
io

ns

One can test if inference methods can
 identify missing and spurious

 interactions in real networks
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Inference with the hierarchical random
 graph is often more accurate than

 “local” metrics

Clauset, Moore, Newman, Nature (2008)
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Outline

➔ Network modularity
➔ The problem
➔ Algorithms and their evaluation
➔ Are networks really modular?
➔ So what, if real networks are modular?
➔ Beyond modules: positions and block models

➔ BREAK

➔ Network inference
➔ Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
➔ Network inference using hierarchical random graphs
➔ Network inference using stochastic block models

➔ Back to drugs and movies, take-home message
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Network inference using
stochastic block models

Modularity Role-to-role correlations

Guimera, Sales-Pardo, PNAS (2009)
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Block models often outperform hierarchical 
random graphs at identifying

missing interactions

Guimera, Sales-Pardo, PNAS (2009)
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Block models often outperform hierarchical 
random graphs at identifying

spurious interactions

Guimera, Sales-Pardo, PNAS (2009)
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Reconstructing a network is more complicated 
than just adding missing interactions and 

removing spurious interactions

➔Challenges:
➔ We don't know how many links need to be added and 

removed
➔ Links cannot be added and removed independently of each 

other
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➔The reliability of a network is RN

A
 = p(A|AO)

➔The reconstruction AR is the network that maximizes RN

A

➔We obtain AR using uphill search

We define a network reliability:
the network reconstruction is

 the most reliable network
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True network Observed network Test

How do 
network 

properties 
change?

Reconstructed network

How do 
network 

properties 
change?

R
a

nd
o

m
 

er
ro

rs

Do reconstructions improve estimates of 
network properties?
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Network reconstructions provide better 
estimates of global network properties

than the observations themselves
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Guimera, Sales-Pardo, PNAS (2009)

Network reconstructions provide better 
estimates of global network properties

than the observations themselves
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Outline

➔ Network modularity
➔ The problem
➔ Algorithms and their evaluation
➔ Are networks really modular?
➔ So what, if real networks are modular?
➔ Beyond modules: positions and block models
➔ Hands-on: module-identification algorithms

➔ BREAK

➔ Network inference
➔ Shortest tutorial ever on Markov chain Monte Carlo for Bayesian inference
➔ Network inference using hierarchical random graphs
➔ Network inference using stochastic block models

➔ Back to drugs and movies, take-home message and more hands-on
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With the same tools we can predict if 
combining two drugs poses a risk to health...
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Guimera, Sales-Pardo PloS Comp Biol (2013)

We can predict which severe drug interactions 
will be removed from and added to a database
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...or whether you are going to like
“The Dark Knight rises”!



76

ECCS WARM-UP
School on Complex Networks, Sept 13-15 

Predicting human preferences can be 
reformulated as a problem of network 

inference and tackled, in particular, using SBM
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Guimera, Llorente, Moro, Sales-Pardo PloS ONE (2012)

➔ MovieLens set: 100,000 real 1-5 
movie ratings by ~1,000 users

➔ 5 independent splits of the data 
into 80,000 observed ratings and 
20,000 validation ratings

Our approach predicts human preferences 
considerably better than some of the best 

collaborative filtering algorithms
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Thank you

➔Funding

➔More about our research:
➔http://seeslab.info
➔@sees_lab

http://seeslab.info/
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